

TE
AM
FL
Y

Team-Fly®

Page i

Preface

The continual evolution of object oriented technologies creates both opportunities and challenges. The chapters in this
book were selected to represent a variety of perspectives concerning the present and future of this broad sub-field of
software development. Practical considerations limited the size of this book to twelve chapters, which forced the
omission of several important topics such as object oriented programming.

The first four chapters are presented in systems development life cycle order. The opening chapter, written by Edward
Sim, examines object oriented analysis (OOA), reviews some of the fundamental concepts on which OOA is based and
discusses the acceptance of this new technology. Recently, many new techniques and methodologies have been
introduced to assist analysts and users in efforts to identify and specify system requirements. One of the newest
approaches to be used in this effort to improve requirements analysis is the application of object oriented analysis.
Proponents of object technologies argue that the use of objects facilitates communication and problem understanding
because people naturally think about their environment in object oriented ways. The solution for improving analysis and
the requirements produced by that analysis, they argue, is to adopt an object oriented approach to doing analysis.
However, despite these claims, the use of OOA has not achieved the levels of adoption that other object oriented
technologies (i.e., programming languages) have achieved.

In the next chapter James Nelson, Kay Nelson, Mehdi Ghods, and Holly Lee discuss the use of structured design
techniques in an object oriented environment. Their research examines specific traditional structured methods for their
contribution to traditional development team performance. The attitude of the team toward structured methods and the
satisfaction of the team with training in structured methods are used as mediating variables in this examination.
Correlation analysis and stepwise regression are used as analysis methodologies. The results of these analyses are then
mapped to the object oriented environment.

Samuel Agyemang describes object oriented testing. Most researchers and practitioners seem to agree that object
oriented testing is a challenge. The main reason for this view seems to revolve around the fact that the objects and the
code are inseparable, and also because of inheritance. Nevertheless, object oriented systems, when successfully tested,
leave a better maintained product than traditional non-object oriented software.

Page ii

Jozsef Komlodi examines the technical and market viability of object database technology. Object databases represent a
revolutionary new technology and provide a superior storage facility for complex data structures and types. They also
enable close language binding and a unified development process. It is a mature technology with advanced database
management and development features, and has several proven and robust deployment examples. Besides its current
technical excellence, this technology is also demonstrating future potential through such emerging technologies as Java,
Application servers, and XML-a markup meta-language for documents containing structured information. The past
failure of object databases to proliferate the market was mainly due to unawareness, lack of skills, and the overwhelming
existing investment in relational systems. These factors are changing and new technology adoption is accelerating, so
object databases are looking forward to a slow but sure take off.

A second grouping of chapters illustrates one of the main benefits of object technology-reuse, along with one of the
main challenges-what to do with legacy systems. Jane Fedorowicz and Denis Lee provide an overview of software reuse
and object technology. They surveyed practitioners with extensive systems development experience to evaluate their
experiences with object oriented tools and techniques. A related goal of the study was to focus on reuse-to determine
what is being reused and by whom.

The chapter by Gretchen Irwin and Chamini Wasalathantry provides an empirical study of reuse of object models. The
aim of their study was to explore the effect of a reusable example on the cognitive processes associated with object
oriented modeling.

Cobo and Mauco discuss transforming legacy systems into object oriented. They discuss how the development of new
architectures and the improvements in programming methods and languages have created a need to reverse engineer and
reengineer existing program code in order to get as much value as possible from legacy systems, while exploiting the
latest technology.

Gerald Cameron considers integration and migration issues associated with upgrading legacy applications. Conversion
of a COBOL legacy application to an object oriented application requires a complete restructuring of the legacy
application. Objects and their inheritance structure must be identified, data usage and data flow must be analyzed, and
instructions must be allocated to objects. Dynamic Object Oriented Programming allows parts of an application design
that are represented by objects to be modified dynamically. Integrating or migrating legacy applications with newer
more advanced client/server architectures can be a very expensive and time-

Page iii

consuming undertaking.

The final four chapters address some of the more complex issues associated with object technologies. Alex Podaras
introduces distributed object systems. The purpose of his chapter is to provide a clear understanding of what distributed
object oriented systems are, no matter how complex they may appear to be. It will be shown that, fundamentally,
distributed object oriented systems must have two object oriented properties or characteristics: encapsulation (the ability
to hide code from the user) and messages (the way objects communicate). Additionally, it will be shown that software
components (objects) of the distributed object oriented systems must have certain inherent features. Aside from the two
object oriented properties and the certain inherent features, any critical system must have the ability to keep its data in a
consistent state. This is particularly important when concurrent transactions are executed.

David Patton provides a discussion of distributed object business engineering. His chapter presents a framework for
architecting enterprise-wide object based information systems. These next-generation systems maximize information
value throughout the enterprise, while reducing development time and effort throughout the system lifetime.

Luis Proano examines industry trends in order to make recommendations for training approaches for object technology
skills. He offers some ideas regarding the current needs in the information technology industry in terms of object
oriented technology skills and knowledge. He also analyzes factors like the lack of mainstream products and object
standards influencing the development of skilled professionals in working with object databases.

Robert Gittins brings together two important trends by questioning the use of object oriented technology for business
process reengineering. He asserts that although the potential for object oriented technology has information technology
and business professionals extremely excited, the burgeoning field is undeniably immature and currently lacks the
stability necessary to be considered mainstream or a reliable option for companies that are about to reengineer their
business processes. Despite the growing popularity of object oriented technology, there are numerous issues that have
contributed to its inability to firmly entrench itself and take over from the older, proven technologies. Object oriented
technology's image problem has created a highly difficult decision-making process for corporations about to embark on
business process reengineering (BPR) projects. At this time, reengineering with object technologies is a significant risk
for companies to make and those who have moved forward with object technologies have not, for the most part, seen the
results that they were hoping for and their organizations are now suffering as a result of this decision.

Page 1

Chapter I—
Object Oriented Requirements Analysis:
Its Challenges and Use

Edward R. Sim
Loyola College, USA

Introduction

The ability to correctly identify system requirements is seen by most Information Systems (IS) researchers and
practitioners as essential to the design and development of effective information systems (Yadav, Bravoco et al. 1988;
Vessey 1994). Requirements are used to drive all subsequent stages of systems development and are critical to system
validation. Incorrect requirements or poorly specified requirements usually produce systems that require major revisions
or are abandoned entirely (Pressman 1996). Recently, many new techniques and methodologies have been introduced to
assist analysts and users in efforts to identify and specify system requirements (Coad, North et al. 1995) (Pancake 1995).
One of the newest approaches to be used in this effort to improve requirements analysis is the application of object
oriented analysis (OOA).

Proponents of OO argue that the use of OO concepts improves communication and the formation of accurate conceptual
models because OO's fundamental concepts are more "natural" (Booch 1991). They argue that the use of OO facilitates
communication and problem understanding because people naturally think about their environment in object oriented
ways (Martin and Odell 1992). The solution for

Page 2

improving analysis and the requirements produced by that analysis, they argue, is to adopt an OO approach to doing
analysis. However, despite these claims, the use of OOA has not achieved the levels of adoption that other object
oriented technologies (i.e., programming languages) have achieved. This chapter examines OOA, reviews some of the
fundamental concepts on which OOA is based and discusses the acceptance of this new technology.

OO Requirements Analysis

Requirements drive the function to structure transformation that occurs during IS development. The requirements for a
particular IS development effort represent the goals or tasks that system must meet in order to be successful (Davis
1993). Most often these goals or requirements are specified as a set of functions and constraints that the system must
meet (Yadav, Bravoco et al. 1988). Usually these requirements are expressed at a relatively high level of abstraction
(i.e., the system must provide customer purchase information) and are later refined to detailed specifications.

Many researchers and developers of IS methodologies divide the requirements activities into discrete stages: problem
analysis and description (Norman 1988). During the problem analysis the analyst seeks to understand the problem by
identifying essential problem elements and structuring those elements into a coherent problem description. The problem
description becomes the basis on which a solution is proposed and subsequent specifications are written. These two
major activities of requirements are referred to as requirements elicitation and requirements specification (Whitten,
Bentley et al. 1994). Various techniques for performing the activities of each of these stages have been proposed. In
most cases the techniques suggested by the particular development methodology attempt to guide the user in
constructing various graphical models (sometimes augmented by textual descriptions) that describe the current and
future systems. The requirements output consists of a set of models and/or textual descriptions produced by following
the techniques and heuristics suggested by the methodology.

The specific output products of the requirements activities vary according to the IS development methodology being
followed. In most cases, structured analysis leads to the development of data flow diagrams, textual process
specifications and a high level data dictio-

Page 3

nary [Demarco, 1978, p. 352]. In Object Oriented Analysis the output products vary according to the specific OOA
methodology used, but at minimum most OOA methodologies attempt to model both the structure and behavior of the
system.

The most important OO model produced during the requirements phase is the high level object model (Jacobson 1993).
The object model shows the basic structural relationship between the elements in the system (i.e., business objects). To
produce the object model, the analyst must identify the basic objects of interest in the system and their relationships or
associations and important attributes. The behavior or dynamics of the system are often represented in a separate model
(i.e., a dynamic model or event schema). These models are often merged into a single object model that represents
objects that include both structure (i.e., attributes) and behavior (i.e., services or methods) (Rumbaugh, Blaha et al.
1991). In addition, inheritance relationships and message passing connections are sometimes shown. Typical outputs of
OOA would include an object model, use cases, and an event schema model (Yourdon, Whitehead et al. 1995).

Object Oriented (OO) Software Development

Progenitors of the object oriented approach to software development argue that at its most basic level OO is a way of
modeling reality (Martin and Odell 1998) (Booch, Rumbaugh et al. 1995). OO provides a robust conceptual framework
for developing models that can be used to assist in the development of software and information systems. The
proponents of OO suggest that as the complexity of software systems has increased, so too has the developer's need to
have effective modeling concepts that can accurately capture the developer's understanding of reality. The promise of
OO is its ability to provide a more powerful method to derive the models that are necessary to create complex software
systems (Henderson-Sellers and Edwards 1990; Loy 1990).

Fundamentally, all software development methodologies provide heuristics for mapping our understanding of some real
world entity or process into a model that the computer can manipulate. However, with conventional approaches the
representations within the computer are usually very different from the real world entities and processes that are being
modeled. This ''conceptual" difference is a constraint on the software developer's ability to build complex

Page 4

software systems. OO attempts to overcome this limitation by providing a method for creating models that is more
flexible and can more closely represent the reality that is being modeled (Weinberg, Guimaraes et al. 1990).

OO more closely models the way the we actually understand reality because we think in terms of concepts which are
derived from our ability to abstract similarities from distinct objects in our environment (Martin and Odell 1992). These
concepts, real and abstract, are represented as objects in object modeling. We organize our understanding of reality
around the generalizations we derive from our concepts.

Since object oriented software development is a new approach to software development, it is important that the basic
principles of "object" orientation be described.

OO Concepts

Objects

In the OO approach to modeling reality and developing software, all concepts whether real or abstract can be referred to
as objects. The unifying theme of all object oriented methodologies is the object. An object represents a thing or
concept. Some typical definitions of objects are:

Something you can do things to. An object has state, behavior, and identity. The terms instance and object are
interchangeable (Booch 1994).

A concept, abstraction, or thing with crisp boundaries and meanings for the problem at hand; an instance of a class
(Rumbaugh, Blaha et al. 1991).

Anything real or abstract, about which we store data and those methods that manipulate the data (Booch 1986).

Objects are used to model the basic concepts and entities in the "problem space." By examining the problem space we
are able to identify a set of objects that are the components of the "problem space" (Henderson-Sellers and Edwards
1990).

Encapsulation and Inheritance

Objects combine both data and processes. Objects respond to requests for services (called messages) by invoking
internal procedures (called methods). The internal procedures and data are referred

Page 5

to as the private parts of the object and are not accessible to other objects. The data and procedures within the object are
encapsulated by the object. The encapsulation of the object's private parts make objects highly modular and effectively
hides the information of the object from other objects.

Objects share attributes and procedures by inheriting those attributes and procedures from one or more parent classes.
For example, a sports car object may be a member of a more general set of objects (cars) and may have inherited from
the car parent class those attributes that are associated with the car class (maker, has wheels, has an engine, etc).
Multiple inheritance allows objects to inherit properties from several classes. The use of inheritance allows the designer
to incrementally specialize a specific object (called an instantiation) without recoding those attributes and behaviors that
are common to the class. Objects may inherit attributes and behavior from a single parent class or from multiple classes.

Classification

The grouping of similar objects into classes is referred to as classification and is a critical component of OO analysis.
The grouping of objects into classes creates a hierarchical object structure. Booch distinguishes between class-structure
hierarchies which he refers to as "kind -of" hierarchies and object structure hierarchies which he refers to as "is a part of"
hierarchies. Booch believes that both kinds of hierarchies are necessary to model a complex system (Booch 1991).

Identifying hierarchical structure is a critical mechanism for reducing the complexity of modeling complicated systems.
Since most hierarchical systems are "usually composed of only a few kinds of different elements" (Simon 1969), the
inheritance mechanism supported by most OO methodologies can be used to reduce the difficulty associated with
modeling the complex systems.

Proper classification of objects is essential to effective object oriented analysis and design. Booch argues that object
classification is particularly hard because there is no "perfect" classification and intelligent classification requires
creative insight. Booch points out that the classification of objects depends in large part on the perspective of the
observer (Booch 1994). The three general approaches to classification are classical classification, conceptual
classification, and prototype theory (Sowa 1984).

Page 6

In the classical approach to classification, all objects or entities that share a similar set of features or characteristics are
grouped into a class. Although a particular object may have many features or characteristics, only those that are
considered relevant from the perspective of the system are considered. Most of the approaches used for classification in
object oriented methodologies are classical (Booch 1994). An example of the classical approach to classification is the
approach suggested by Coad and Yourdon.

Coad and Yourdon suggest the following approach for finding and classifying objects (Coad, North et al. 1995):

Structure (is-a and part-of relationships);
Other systems;
Devices;
Events remembered;
Locations; and
Organizational units.

In conceptual classification, classes are formed by associating objects into classes when they share a general conceptual
description of a shared property (Michalski and Stepp 1983). In the classical approach, the features or characteristics that
a set of objects share are distinguishable and measurable (i.e., employee name, account balance, etc.). If the particular
features that associate a given set of objects are more conceptual (e.g., is tall), then conceptual classification is being
used.

The behavior analysis used by Wirfs-Brock (Wirfs-Brock, Wilkerson et al. 1990) is a form of conceptual clustering. In
the Wirfs-Brock object oriented methodology, the concept of an object's "responsibilities" is used to group objects into
classes that have or share a common set of responsibilities. According to Wirfs-Brock, responsibilities are used to denote
the knowledge that an object contains and the actions that it can perform. The analyst using the Wirfs-Brock
methodology uses the concept of responsibilities to define classes of objects that provide a particular system behavior.

Classical and conceptual classification approaches are sufficient for most object oriented analysis; however, for
situations where these approaches are inadequate, prototype theory can be used to assist in classification (Booch 1994).
In this form of classification, objects are classified according to their resemblance to a "prototypical" object. In prototype
classification, objects are grouped according to family

Page 7

resemblance to the prototypical object. The example used by Booch to illustrate this idea is the notion that we can
perceive beanbag chairs, barber chairs, and contour chairs as being "chairs" not because they share a distinguishable
common property, but because they share a common resemblance to our conceptual prototypical object of a chair
(Booch 1994). Prototyping classification is not currently directly supported in any of the object oriented methodologies.

Polymorphism

Polymorphism allows certain objects in a system to respond in different ways to the same message. For example, a
"show" message may be applied to a text document, graphical image, or audio object. In each case the object would
interpret the show command in a way that is meaningful for that object. Polymorphism reduces the complexity
associated with dealing with multiple objects by allowing a single message to have multiple meanings.

The origins of polymorphism can be seen in the use of generic or overloaded operators in traditional programming
languages. The specific operation of a generic operator is determined by the context in which it is used (Pratt and
Zelkowitz 1996). For example, in traditional programming languages a "+" can be interpreted as meaning integer
addition or real number addition, depending on the data types of its argument. Polymorphism extends this concept to
objects.

Behavior and States

The dynamic behavior of an object refers to the changes of the object over time and in response to events. Each object
exists in a certain "state". The state of the object is defined to be the value of the object's attributes and associations or
links with other objects. For example, a car object could be in a state of "running" or in a state of "off.'' The car object's
response to the event "ignition key turned" would be different depending on the state of the car object. The response of
an object depends on a given input (message) and the state of the object. Events can change an object's state. The
complete history of all events that can happen to a given object is the object's lifecycle. Events can be categorized into
event classes or event types. An event schema (or event trace) can be used to show the sequence in which the events
occur and how the events affect the state of the object. Scenarios or Use cases can be used to describe the sequence of
events that occur

TE
AM
FL
Y

Team-Fly®

Page 8

in one particular execution of the system (its lifecycle). State transition diagrams are used to show the state sequence of
a given object caused by the events occurring to that object. A collection of state diagrams can be used to show the
complete behavior of a system.

Origins of Object Orientation Concepts

One of the most interesting aspects of object orientation is that the concepts it represents are pervasive throughout
computer science, information system and software development literature. In addition, object orientation is also used in
cognitive psychology, hardware design and many other areas. Object oriented concepts are currently being used in the
design and development of human computer interfaces (HCI) (Collins 1995), databases (object oriented databases) (Kim
1990; Edelstein 1991), analysis and design methodologies, artificial intelligence research and many other computer
science, information system and software endeavors (Khoshafian and Abnous 1990). Since fundamentally object
orientation represents the concepts behind good engineering and design, it makes sense that these concepts have broad
applicability.

Many areas can be identified as making a significant contribution to the object-orientation paradigm: programming
languages, databases, and research in artificial intelligence are the most frequently mentioned areas.

Programming Languages

Ideas in programming language design have contributed significantly to object orientation. In earlier programming
languages the primitives provided by the language were very limited (Pratt and Zelkowitz 1996). This forced
programmers to work at very low levels of abstraction. Real world concepts had to be represented and modeled at nearly
machine level using constructs like linked lists, arrays, variables, etc. The cognitive distance between these two worlds
(i.e., the real world and the world inside the computer) was very wide; consequently, general programming and the
associated problem solving it represented were difficult (Henderson-Sellers and Edwards 1990).

One of the first ideas to assist the programmer was the use of data types. Data types are constructs that represent data
structure and a set of prescribed operations that can be applied to the data structure (Pratt

Page 9

and Zelkowitz 1996). For example, real numbers would be considered a data type. Real numbers are implemented by the
programming language and represented in the machine architecture to have a particular defined data structure and a set
of operations that can be applied to them (i.e., addition, etc.).

The data type concept defined by the language implementation was later extended by allowing user defined or abstract
data types. Abstract data types are "types" constructed and defined by the programmer. The abstract data type allows the
user (i.e., programmer) to define structure and corresponding operations once, and then apply the type definition to new
instances of the data type. The idea of the abstract type laid the foundation for the "object" in object oriented
programming languages. However, abstract data types lack object oriented characteristics like encapsulation, support for
inheritance, and message passing.

Many authors have cited Simula as the language that introduced many object oriented concepts into programming
languages (Khoshafian and Abnous 1990; Bourne 1992; LaLonde 1994; Pratt and Zelkowitz 1996). Simula was
developed by Dahl and Nygaadas as a simulation language. Simula took the concept of block structure from ALGOL
and the abstract data type and extended it to the concept of an object to promote encapsulation.

Simula was also significant because it introduced the concept of classes, inheritance, and communication between
objects by message passing. Simula took this approach because it was a simulation language and needed to model the
real world of complex interactions between objects [Khoshafian, 1990 #27]. The world view Simula perceived was
already packaged in objects and messages; consequently, these concepts became natural constructs in the Simula
language.

The implementation of the class construct in Simula was significant because it supported the notion of inheritance.
Classes, which describe the structure and behavior of objects, are similar in concept to abstract data types. However,
class structures extended the capability of abstract data types by directly supporting the sharing of similar structure and
behavior through inheritance. The effect of the class construct at the programming level was to greatly reduce the
amount of work necessary to represent a problem in the computer.

The ideas in Simula were further extended by the researchers at

Page 10

the Xerox Research Park at Palo Alto, California into a language called Smalltalk (Bourne 1992; LaLonde 1994).
Smalltalk is considered by many people to be the quintessential object oriented programming language because it
supports the major concepts of object orientation. Smalltalk has grown in importance since its inception; however, it has
not been considered a language useful for large system development. Some of the major criticisms of Smalltalk have
been its lack of support for static -type checking, poor portability, and its general poor performance. In addition to these
limitations, Smalltalk has been criticized for limited support of concurrency (Bourne 1992; LaLonde 1994).

A major goal of all object oriented programming languages is to enable the programmer to use constructs that model the
real world as closely as possible. A significant aspect of this goal is the ability to model concurrent activities or
processes. Real world interactions occur concurrently; consequently, the objects that represent those real world entities
must interact concurrently. Smalltalk supports concurrency by providing a construct called a "process." However, the
"process" feature in Smalltalk has been criticized as being limited (Yokote and Tokoro 1987). Other OOPLs have made
attempts to support concurrency with various language features. The major examples of these concurrent OOPLs are
Hewitts Actor Model and ABCL/1 (Khoshafian and Abnous 1990).

In addition to the OOPLs, many other languages that were not developed as OOPL have been extended to support object
oriented concepts (e.g., C++) (Pratt and Zelkowitz 1996). The success of these object oriented extensions to the various
programming languages has been varied (Khoshafian and Abnous 1990).

In addition to Smalltalk, the work done at PARC (Xerox's Palo Alto Research Park) which was led by Alan Kay, Adele
Goldberg, Daniel Ingall and others, applied object oriented ideas and technology to many other areas. One of their most
notable applications of object oriented design principles was the design of the objected oriented computer interface
(Collins 1995). The object oriented interface developed at PARC influenced the design of the Apple Macintosh and led
to the development of the graphical user interface (Shneiderman 1988).

Graphical user interfaces (GUI) use the concepts of objects to represent a desktop metaphor wherein icons appear for
files, applications, and devices. Each icon on the desktop represents an object that

Page 11

can be selected and used according to its specified behavior (Collins 1995) (Foley 1987). Message passing and
communication protocols between the objects are implemented with constructs similar to those described above for
programming languages. Current operating systems like Windows, Mac OS, and Warp support dynamic information
exchange between applications by using object message passing protocols. The object oriented paradigm has effected
not only the design of the interface itself, but all aspects of the operating system and system resource management and
communication.

Artificial Intelligence

Independently of the research in the software community, artificial intelligence (AI) researchers were struggling with
essentially the same problem of modeling and structuring knowledge that beset software developers and program
language designers. Scripts and frames were developed by AI researchers as constructs for organizing and representing
real world knowledge. Marvin Minsky used the concept of a frame as a way of packaging both declarative and
procedural knowledge into a single representation (Minsky 1975). Objects in object oriented programming languages are
similar in concept to the frame used for knowledge representation in artificial intelligence (Parsaye, Chignell et al.
1989).

A frame is a data structure that includes all knowledge about an entity or concept. Frames represent a unit of knowledge
that combines both declarations (structure) and procedures (behavior). Detail about the frame is included in the slots and
facets of the frame (Turban 1993). The slot can contain procedural knowledge or declarative knowledge about the frame.
Frame based programming languages (Finin 1986) are similar in concept to object oriented programming languages and
many of the ideas for knowledge representation have been used in the implementation of object oriented programming
languages. Although the two concepts, frames and objects, emerged from different groups, it is clear that there are many
similarities.

Databases

Databases and their design have also contributed and benefited significantly from the object oriented paradigm. Data
modeling concepts have had a significant influence on object oriented analysis and design methodologies. Many object
oriented analysis and design

Page 12

methodologies have been built on data and information modeling concepts in entity-relation (ER) diagrams and other
semantic data models. In the ER diagram, first proposed by Chen, the information domain is modeled in terms of
entities, attributes, and the relationships between entities (Chen 1976).

Entities in the ER diagram share many similar characteristics to objects or classes in object orientation. For example, a
customer entity can be seen as a template (i.e., class) for holding instances of customers (i.e., individual customer
objects). Strategies for transforming ER entities and their relations into relational database tables are well defined in the
database literature (McFadden and Hoffer 1994). The attributes of the entities in the ER diagram become the columns in
the relational tables and linkages between tables are established through the use of common link fields (i.e., attributes).
Entities, as described in database literature (Parsaye, Chignell et al. 1989; Khoshafian and Abnous 1990; Kim 1990;
Ozsu and Valduriez 1991; McFadden and Hoffer 1994), have only data structure and do not encapsulate behavior or
code; consequently, they are significantly different than objects (which encapsulate both code and data).

Object oriented Databases (OODB) based on the concepts of object orientation currently exist and many more are under
development (Kim 1990). The advantage of OODB, according to Khoshafian and Abnous (Khoshafian and Abnous
1990), is that they overcome many of the limitations of current relational database architecture by providing more
expressiveness in modeling complex and nested information (e.g., the information in CAD and engineering databases)
(Edelstein 1991).

Since OO concepts have shown great potential for improving programming languages, database design, interfaces, and
other aspects of information technology, many developers and experts are now attempting to apply OO concepts to the
analysis and design issues in software development. Many new software development methodologies have adopted these
OO concepts as a basis for their approach. The following sections discuss the general approach used by these OO
methodologists.

OO Analysis Methodologies

According to Booch, "a method is a disciplined process for generating a set of models for describing a software system
under develop-

Page 13

ment, using some well defined notation" (Booch 1991). Peters and Tripp assert that a "methodology is a collection of
methods for developing coordinated by some general philosophy" for developing a system (Peters and Tripp 1977). The
general philosophy used in OO software development is based on OO concepts. An overview of the general approach
used by many object oriented methodologies follows.

Steps in OOA

The purpose of OO analysis is the same as traditional approaches to analysis; that is, to produce a complete description
of the problem domain and the requirements for the proposed system (Fichman and Kemerer 1992). The difference
between an object oriented approach to analysis and a traditional approach is the method for understanding and
representing the problem domain. For example, with structured analysis, problem decomposition is based on processes
or functions. Top level functions or processes are identified and decomposed into subprocesses. These subprocesses are
in turn decomposed into other processes (Yourdon and Constantine, 1979).

The basic understanding of the problem domain comes from understanding what processes must occur and how the data
is transformed by these processes. The basic approach of structured analysis is top-down (Page-Jones, 1988). OO
analysis, on the other hand, organizes the problem statement around objects that exist in the user's view of the world.
These objects can be implemented in a top-down, bottom -up, or middle-out approach (Henderson-Sellers and Edwards,
1990). A typical approach to object analysis is as follows:

1) An initial problem statement is identified. The focus of the problem statement should be on what is to be done, not
how. Since the initial problem statement is usually incomplete, it becomes only the basis for developing a full analysis.

2) From the problem statements the potential objects are identified. Since not all objects are explicit in the problem
statement, general and application domain knowledge should be used to identify additional candidate objects. Once all
potential objects have been identified, similar objects can be grouped into classes. The initial object model is refined by
eliminating all irrelevant, vague, or redundant classes.

Page 14

3) A data dictionary is prepared to provide a complete description of all classes.

4) Associations between classes are identified. Associations, which are dependencies between classes, can usually be
identified by looking for the verbs in the problem statement. For example, "works-for" might describe an association
between a person object and a company object.

5) Identify the attributes. Attributes are properties of classes. Adjectives can be used to identify object attributes.

6) Refine the model by using inheritance to share common structure.

7) Define the behavior of the objects by defining the operations and the messages that pass between them (Tkach, 1994,
pp. 323).

Steps in OOD

OO Design, like traditional design, focuses on the "how." The overall system architecture is developed during system
design and implementation details are added to the basic object model. Unlike structured design, most authors of OO
design advocate a single notation centered around the object concept (Bailin 1989; Wirfs-Brock, Wilkerson et al. 1990;
Rumbaugh, Blaha et al., 1991; Martin and Odell, 1998). This single notational schema can be applied to all the activities
of the software development. An example of this approach is Rumbaugh's OMT (Object Modeling Technique).

OMT uses the same notation for all the activities of software development. The shift from analysis to design is largely a
matter of changing emphasis from problem domain concepts to solution domain concepts. Since some of the objects in
the solution domain have no direct analog in the problem domain, new objects must be added to represent the solution
constructs necessary to implement the solution (i.e., interface objects, control objects). The use of a single notation
facilitates the addition of new objects in the design process.

The benefits of using the same conceptual unit to address issues of analysis and design are twofold. First, unlike the shift
from structured analysis to structured design, the notation remains the same. This reduces the need to map analysis
notation into design notation, i.e., data flow diagrams into structured charts. The benefit here is a reduction in system
development complexity. A second major benefit is that the consistent notation supports an iterative approach to system

Page 15

development. This encourages a more pragmatic and realistic approach to design which Booch characterizes as "analyze
a little, design a little" (Booch 1994). A typical approach to design is as follows:

Refine the work during OOA by looking for subclasses and message characteristics, and the details associated with
implementation constructs; then, represent the procedural detail associated with each object attribute, and the procedural
detail associated with each operation.

The above approach to design represents the basic approach used by Pressman and Booch (Booch 1991; Pressman,
1992). Other authors approach object oriented analysis and design differently (Bailin 1989; Weinberg, Guimaraes et al.
1990; Wirfs-Brock, Wilkerson et al., 1990). Rumbaugh, for example, divides design into two parts which he calls
system design and object design. During system design overall system architecture is developed. The relationships
between the subsystems which are organized around a given set of functions (called a service by Rumbaugh) are
specified. During object design, internal data structures and implementation details (specifications of algorithms) for
operations are detailed (Rumbaugh, Blaha et al., 1991).

The Unified Modeling Language (UML) has recently been developed to address some of the problems caused by
conflicting notation and concepts in OOA. The UML approach brings together much of the work of Booch, Rumbaugh,
and Jacobson and attempts to provide a common framework (meta-model) that can used to represent the semantics of
different approaches to OOA (Martin and Odell, 1998).

Diffusion of OOA

Although OO analysis and requirements modeling has great potential for addressing many of the problems associated
with modern IS and software development, its acceptance has not been widespread. The study of the adoption of OOA
can be based on the diffusion literature.

Research based on diffusion of innovation (DOI) investigates the evaluation, adoption, and implementation of
innovations (Rogers, 1983). Although there exists a large body of research that has used DOI theory to investigate the
induction of new information technologies and information systems into organizations, very little literature exists that
has used DOI to investigate the adoption of new "methodologies" aimed at improving the analysis phase of software
develop-

Page 16

ment (Raghaven, 1989, p. 214). Currently, most of the literature that has addressed new practices or techniques in
software engineering has focused on either design or code level activities.

The diffusion of innovations has been studied since the early 1940s and comprises a substantial body of literature
(Prescott, 1995, p. 439). Diffusion is defined as "the process by which an innovation is communicated through certain
channels over time among the members of a social system" (Rogers, 1983). Factors which affect the diffusion of
innovations include the characteristics of the innovation, the social system which is the target of the innovation, and the
various communication channels over which information about the innovation is communicated.

The diffusion process consists of two stages: adoption and implementation. The adoption stage is often broken down
into stages of knowledge acquisition, persuasion and learning and decision leading to the actual adoption decision. The
implementation stage includes change to work organization, work processes and the technology necessary for the
innovation deployment within the organization (Prescott and Conger 1995). DOI has been used to study a variety of IS
technologies including e-mail, multimedia, data administration, and object oriented methods. The DOI research within
the IS community has been influenced by the formation of DIGIT (Diffusion Interest Group in Information Technology)
which was formed in 1988.

Diffusion literature suggests that the successful introduction of innovations and technologies (e.g. OOA) depends in part
on the characteristics of the innovation, organizational influences, and the personal characteristics of potential users.

DOI Factors

Characteristics of the innovation are conceptualized in diffusion literature as relative advantage, compatibility,
complexity, trialability, and observability. The relative advantage of an innovation is the degree to which it is perceived
as being an improvement over the current practice or technology it is replacing. Relative advantage can be measured in
economic terms or an increase in social prestige or some other benefit. If an innovation is perceived to have a large
relative advantage then its adoption rate would be positively affected. The compatibility of an innovation is the degree to
which the innova -

Page 17

tion is perceived to be consistent with existing practices. Innovations that are very dissimilar to existing practices will be
less likely to be accepted than innovations that are similar or built on current practices. Complexity is the degree to
which an innovation is perceived to be difficult to understand and use. Innovations that are perceived to be complex or
complicated will be adopted less readily than innovations that are perceived to be easily to understood and used.
Trialability refers to the degree which an innovation may be used or experimented with on a limited basis. Innovations
that are easier to use on a limited basis are usually adopted faster.

Observability refers to the degree to which the results of an innovation are visible to others. If the use of an innovation
results in positive benefits that are easily observed, then the innovation will be adopted more quickly.

Organizational factors do influence the adoption of innovations. These factors can include organizational reward
structures, training, management support, and the role of various change agents. Organization reward structures and job
performance criteria can be used to encourage the adoption of an innovation. Often, however, organizations fail to align
their reward and job performance criteria with the new practices and procedures required to support the innovation.
Consequently, potential users of the innovation fail to see the benefits of adopting the innovation at a personal level even
though they recognize that the innovation does produce a superior product. This discrepancy can result in a lack of
motivation on the part of the potential adopters and even cause resistance to the innovation.

Training and management support are also factors that can influence the adoption of innovations within organizations.
Training in a new technology can positively influence the acceptance and use of the new technology; however, in order
for the training to be effective it must be of sufficient duration to ensure a minimal competence level. Strong
management support can also encourage the adoption of a new technology; however, reward structures must be aligned
to reinforce management efforts.

The importance of change agents in the successful induction of new technologies is well established in the DOI
literature. However, the effectiveness of these change agents does vary between organizations and type of innovation.

Traditional DOI literature, some based on marketing research

TE
AM
FL
Y

Team-Fly®

Page 18

studies, has hypothesized a positive correlation between some demographic descriptors and adoption rate. However,
recent studies relating to the diffusion of information technologies and software engineering innovations have shown a
more mixed result (Leonard-Barton 1987).

Characteristics of OOA: Diffusion Perspective

Although all of the above mentioned factors have influenced the adoption of OOA, this discussion will focus only on the
characteristics of the innovation itself. According to Rogers, 49% to 87% of the rate of adoption can be explained by the
attributes or characteristics of the innovation.

The lack of widespread adoption of OOA can be explained, in part, by comparing it with the dominant approach
currently being used in the IS field-structured analysis. Compared to structured analysis (SA), OOA ranks lower on most
of the attributes necessary for a fast rate of adoption. However, with respect to SA, OOA can be said to have a higher
relative advantage. Evidence for this assertion abounds in the literature (Fichman 1993). Most practitioner literature has
been uniformly positive about the potential of OO technologies based on the perceived potential of this approach. The
main argument presented here is that OOA represents a more natural way of model-

Table 1: DOI Factors

Factors Variables

Characteristics of the Innovation relative advantage
compatibility
complexity
trialability
observability

Organizational Influences job performance criteria
reward system
training
management support
advocates for the innovation
access to consulting help
client preferences

Personal Characteristics of Potential Users demographics
technical skills
years of experiences

Page 19

ing reality, whereas SA forces the developer into a conceptionalization of reality based on processes and functions. This
can be a significant disadvantage when designing applications for client-server environments or for highly dynamic
systems. OOA also offers an advantage over SA because the concept of the object can be used consistently in both the
analysis and design phases of development. Implementation constructs (e.g., interface and control objects) can be added
during the design of the system using the same notation and models as analysis. In SA, design is usually implemented
with different constructs (structure charts). This switching of concepts and notation can add a cognitive burden to the
developer.

Overall, the compatibility of OOA with existing approaches is low. OOA, and OO concepts, in general, represent a
paradigm shift in thinking about problems. SA which is based on the familiar concept of process is significantly more
compatible with traditional imperative programming and system development. Currently, standards are being established
that will address some compatibility issues with existing legacy systems (i.e., CORBA). However, fundamentally the
incompatibility of OOA with existing approaches is based on the paradigmatic shift in thinking that is required to
analyze and design a system using object concepts.

OOA rates unfavorably on the complexity attribute because it requires developers to learn a whole new set of concepts.
Successful application of OOA requires that the developers learn basic object oriented concepts and a methodology for
applying these concepts to analysis. A whole host of strategies is offered to assist developers in finding objects (i.e., use
cases), classifying objects (domain analysis), and describing object behavior (object life cycles, object interaction
diagrams). Understanding this new skill set requires a significant effort on the part of the developer.

OOA is difficult to use on a trial basis because of the high cost of training and implementation. In addition, many of the
benefits of OOA can only be achieved after a significant investment of time and effort to create a database of reusable
objects. Although reuse is a concept that has been applied mostly at the code level, reusable analysis and design objects
are also a promise of object orientation. However, this benefit would not likely be achieved in a trial period.

It is difficult to observe the benefits and effects of OOA, given that metrics for OO techniques are poorly defined. This
is especially true

Page 20

Technology
Characteristics

OOA Structured Analysis

relative advantage high medium

compatibility low high

complexity high medium

trialability low medium

observability low medium

for OOA, which addresses the complexity of analyzing and defining requirements. The analysis and requirements stage
is the most unstructured part of the development life cycle. Any benefits that would accrue from an improved analysis
and requirements definition would not likely be observable until the final stages of the development.

In summary, although OOA rates high on relative advantage with respect to SA, it rates less favorably with respect to
the other characteristics. However, this does not necessarily imply that OOA will not be as widely adopted as SA in the
long run. But it does imply that the rate of adoption for OOA will be relatively slow and that the role of change agents
and effective adoption management strategies will be critical to OOA's success in the marketplace.

Management must take an active role to ensure widespread adoption of OOA. Effective training as well as effective
reward structures are essential. In addition, projects must have measurable milestones that will show the effectiveness of
OOA. Reuse, a significant benefit of OOA, can only be achieved through management policies that encourage reuse and
the development of organizational repositories of objects.

Conclusion

Determining requirements has always been a difficult phase of IS and software development. Mistakes made during
requirements are difficult to correct and can lead to an ineffective or abandoned system development effort. The
difficulty of determining requirements and doing analysis has increased because of complexity of new systems and
technologies. Previous approaches based on structured analysis and process decomposition provide limited support for
developing the dynamic and highly interactive systems required today. A new approach to requirements analysis based
on object concepts has emerged as a potential solution to the problems associated with

Page 21

requirements analysis. However, object oriented concepts represent a distinctly different set of concepts that require a
paradigmatic shift in thinking on the part of developers, managers, and users. An understanding of the concepts, their
origins, and the basic approaches used in OO software and system development is essential to effective use and
management of OOA projects.

Although OOA has potential to address many of the issues in developing requirements its adoption has not been
widespread. The difficulty of adopting and using OOA is similar to most new technologies and innovations. Many
factors influence the adoption of an innovation: characteristics of the innovation, organizational factors, and the attitudes
and abilities of the potential adopters. Effective management of the adoption process requires an awareness of these
factors and capable management policies to address the problems and difficulties of adopting OOA. While the ''relative"
advantage of OOA is high, it lacks characteristics that ease the resistance to an innovation or technology; consequently,
effective management policies are critical to adopting and using OOA.

Training, effective reward structures, and realistic project selection and milestones can help encourage the adoption of
this exciting new technology. However, understanding the basic concepts, their origins, and uses in OO software and
system development is a necessary prerequisite to developing management strategies for its adoption and use.

References

Bailin, S. (1989). "An Object Oriented Requirements Specification Method." Communication of the ACM , 32 (May),
608-623.

Booch (1991). Object oriented Design with Applications. Redwood City, CA., Benjamin/Cumming Co.

Booch, G. (1986). "Object Oriented Development." IEEE Transaction on Software Engineering , 12 (February), 211-
221.

Booch, G. (1994). Object Oriented Analysis and Design with Applications. (2nd ed.). Redwood City, CA:
Benjamin/Cummings Co.

Booch, G., J. Rumbaugh, et al. (1995). The Evolution of Object Methods. Santa Clara, CA, Rational Software
Corporation.

Bourne, J. (1992). Object Oriented Engineering: Building Systems Using. Smalltalk -80.Homewood, IL: Irwin

Chen, P. (1976). "The Entity-Relationship Model-Toward a Unified

Page 22

View of Data." ACM Transactions of Database Systems , 1(1), 9-36.

Coad, P., D. North, et al. (1995). Object Models: Strategies, Patterns, & Applications. Englewoods Cliffs, NJ: Yourdon
Press.

Collins, D. (1995). Designing Object Oriented User Interfaces. Redwood City, CA., Benjamin/Cummings Co.

Davis, A. (1993). Software Requirements: Objects, Functions, & States. Englewood Cliffs, NJ: Prentice-Hall.

Edelstein, H. (1991). "Relational vs. Object Oriented." DBMS (November): 68-79.

Fichman, R., &. Kemerer, C.. (1993). "Adoption of Software Engineering Process Innovations: The Case of Object
Orientation." Sloan Management Review (Winter), 7 -22.

Fichman, R. and C. Kemerer (1992). "Object Oriented and Conventional Analysis and Design Methodologies."
Computer (Oct.), 22-39.

Finin, T. (1986). "Understanding Frame Languages." A1 Expert (November): 44-50.

Foley, J. (1987). Interfaces for Advanced Computing. Scientific American. October.

Henderson-Sellers, B. and J. Edwards (1990). "Object-Oriented Systems Life Cycle." Communication of the ACM , 33
(September), 143 -159.

Jacobson, I. (1993). Object oriented Software Engineering, Reading, MA: Addison -Wesley.

Khoshafian, S. and R. Abnous (1990). Object-Orientation: Concepts, Languages, Databases, User Interfaces. New
York, NY: Wiley.

Kim, W. (1990). "Object Oriented Databases: Definition and Research." IEEE Transactions on Knowledge and Data
Engineering, 2(3), 327-341.

LaLonde, W. (1994). Discovering Smalltalk. Redwood City, CA: Benjamin/Cummings Co..

Leonard-Barton, D. (1987). "Implementing Structured Software Methodologies: A Case of Innovation in Process
Technologies." Interfaces 17(3), 6 -17.

Loy, P. (1990). "A Comparison of Object Oriented and Structured Development Methods." ACM SIGSOFT: Software
Engineering Notes , 15(1), 44-48.

Martin, J. and J. Odell (1992). Object Oriented Analysis and Design. Englewood, NJ: Prentice Hall.

Martin, J. and J. Odell (1998). Object Oriented Methods A Foundation.

Page 23

Englewood, NJ: Prentice Hall.

McFadden and Hoffer (1994). Database Management, Redwood City, CA Benjamin/Cummings Co.

Michalski, R. and R. Stepp (1983). Learning from Observation: Conceptual Clustering. In R. Michalski, J. Carbonell
and T. Mitchellm (Eds.), Machine Learning: An Artificial Intelligence Approach, Palo Alto, CA: Tioga.

Minsky, M. (1975). A Framework for Representing Knowledge. In P. Winston (Ed,), The Psychology of Computer
Vision, New York:, NY: McGraw-Hill.

Norman, D. (1988). The Design of Everyday Things , New York, NY: Doubleday
Currency.

Ozsu, M. and P. Valduriez (1991). "Distributed Databases: Where Are We Now?" Computer IEEE (August), 68-78.

Page-Jones, M. (1988). The Practical Guide to Structured Systems Design, Englewood Cliffs, NJ Yourdon Press.

Pancake, C. (1995). "The Promise and Cost of Object Technology: A Five Year Forecast." Communications of the ACM ,
33 (10), 22-49.

Parsaye, K., M. Chignell, et al. (1989). Intelligent Databases. New York, NY: Wiley.

Peters, L. and L. Tripp (1977). "Comparing Software Design methodologies." Datamation (November), 89 -93.

Pratt, T. and M. Zelkowitz (1996). Programming Languages: Design and Implementation. Englewood, NJ: Prentice
Hall.

Prescott, M. and S. Conger (1995). Information Technology Innovations: A Classification by IT Locus of Impact and
Research Approach. Working Paper.

Pressman, R. S. (1992). Software Engineering: A Practitioner's Approach. (2nd ed.). New York, NY: McGraw-Hill

Pressman, R. S. (1996). Software Engineering: A Practitioner's Approach. (3rd ed.). New York, NY: McGraw-Hill.

Rogers, E. (1983). Diffusion of Innovations. New York,: NY: Free Press.

Rumbaugh, J., M. Blaha, et al. (1991). Object oriented Modeling and Design. Englewoods, NJ: Prentice Hall.

Shneiderman, B. (1988). Designing the User Interface. Reading, MA: Addison-Wesley.

Simon, H. (1969). The Science of the Artificial. Cambridge, MA: MIT Press.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind

Page 24

and Machine. Reading, MA: Addison-Wesley.

Turban, E. (1993). Decision Support and Expert Systems, (3rd ed.) MacMillan.

Vessey, I., & Conger, S. (1994). "Requirements Specifications: Learning Object, Process, and Data Methodologies."
Communications of the ACM, 37(5): 102 -113.

Weinberg, R., T. Guimaraes, et al. (1990). "Object Oriented Systems Development." Journal of Information Systems
Management , 7, 4, 18-26.

Whitten, J., L. Bentley, et al. (1994). Systems Analysis and Design Methods. Homewood, IL: Irwin.

Wirfs-Brock, R., B. Wilkerson, et al. (1990). Designing Object -Oriented Software. Englewoods Cliffs NJ: Prentice -Hall.

Yadav, S., R. Bravoco, et al. (1988). Comparison of Analysis Techniques for Information Requirement Determination.
Communications of the ACM, 31, 9:1090-1097.

Yokote, Y. and M. Tokoro (1987). Concurrent Programming in Concurrent Smalltalk. In A. Yonezawa and M. Tokoro
(Eds.), Object Oriented Concurrent Programming. Cambridge, MA: MIT Press.

Yourdon, E. and L. Constantine (1979). Structured Design. Englewoods, NJ: Prentice
Hall.

Yourdon, E., K. Whitehead, et al. (1995). Mainstream Objects: An Analysis and Design Approach for Business. Upper
Saddle River, NJ: Prentice Hall.

Page 25

Chapter II—
Building on Structured Design Techniques in the Object Oriented Environment

H. James Nelson
University of Utah, USA

Kay M. Nelson
University of Utah, USA

Mehdi Ghods
The Boeing Company, USA

Holly E. Lee
University of Kansas, USA

Introduction

The term structured methods refers to a philosophy of software development which emphasizes an adherence to a set of
consistent rules or methods throughout a project (Yourdon, 1989). These methods include broad programs such as
Systems Development Lifecycles and Methods and Information Engineering as well as individual techniques such as
structured programming, data flow diagramming, data modeling, and Object Oriented methodologies. Perhaps the
newest, most visible, but least understood of these methodologies are the Object Oriented methods. The specific set of
rules or methods that organizations use can come from a variety of sources. Organizations often implement their own
methodologies for software development,

Page 26

using tools and techniques borrowed from a variety of formalized methodologies. Commercially produced
methodologies are also widely used, usually obtained from software vendors and consultants.

The primary objectives of traditional structured methodologies can be summarized as follows: (Martin and McClure,
1988)

• Achieve high-quality programs of predictable behavior

• Achieve programs that are easily modifiable (maintainable)

• Simplify the development process

• Control the development process

• Speed up system development

• Lower the cost of system development

Structured methodologies seek to attain these objectives through the decomposition of complex problems and constructs
into simpler ones, the use of modeling and diagramming techniques, achievement of code clarity and readability,
improved communication with end users, improved documentation, and earlier error detection (Chapin, 1979; Topper
et.al., 1994). Some methodologies also provide for repositories and libraries of code and modules which encourage reuse
(Banker and Kauffman, 1991).

Graham (1994) summarizes the benefits of Object Oriented (OO) methodologies as:

• reuse

• higher quality due to reuse of tested objects and modules

• flexibility

• more naturalistic applications

• ease of maintenance

• ability to reverse engineer and trace requirements

The focus of traditional structured methods is function and procedure with data shared by functions or processes
(Bordoloi and Lee, 1994). In OO methodologies, data and procedure are encapsulated within the object. Therefore, the
primary focus is on data modeling rather than process modeling. This difference in focus does not require that all of the
knowledge gained through the use of traditional structured methods be put aside when adopting OO languages and
methodologies. Rather, a need exists to map traditional methods that

Page 27

have shown performance results in the organization to the OO paradigm. This mapping should be a conceptual one in
that the logic remains the same while the mechanics and focus of the methodology are adapted for OO. Janet Conway, of
GE advanced Concepts Center, states that, "The largest single cost in converting to OO methodology is
training." (Conway, 1993). Reusing knowledge gained from the traditional structured methods environment is one way
of reducing these training costs by focusing on the concepts that produce the best results and adapting them to new
development paradigms.

This research examines specific traditional structured methods for their contribution to traditional development team
performance. The attitude of the team toward structured methods and the satisfaction of the team with training in
structured methods are used as mediating variables in this examination. Correlation analysis and stepwise regression are
used as analysis methodologies. The results of these analyses are then mapped to the OO environment.

Why Structured Methods Make a Difference

Structured methods, as a general concept, can make a difference to application development projects in many ways
(Atkas, 1987; Graham, 1994; Topper et.al., 1994). Using structured methods can effect development team efficiency and
effectiveness. The overall quality and business value of the delivered system can be improved. User satisfaction with
product attributes such as the format of information, the content of information, ease of use of the system, timeliness of
information, and accuracy of information, as well as overall user satisfaction are also impacted by structured methods.

Yourdon (1986) states that application programmers are not very productive and that structured methods can increase
programmer productivity through standardization of work methods and outputs. This can be accomplished on two
dimensions, efficiency and effectiveness. Efficiency is the rate at which programmers produce programs. Efficiency can
be measured in terms of meeting user needs or meeting specified deadlines. It can also be measured as how much of the
work is performed correctly the first time and does not need reworking. Effectiveness addresses the quality of the
product produced by programmers. Does it capture the needs of the business process? Is it delivered bug free? Does it
produce the right information at the right time? These concepts apply to both the traditional and OO develop-

TE
AM
FL
Y

Team-Fly®

Page 28

ment environment.

Structured methods can reduce the impact of differences in programmers' abilities (Yourdon, 1986). Structured methods
seek to formalize the instinctive good practices of experienced programmers in a way that can be taught to programmers
of all experience and ability levels. This is especially critical in a new paradigm such as OO, where most of a
development team may be relatively inexperienced. Examples of programming practices are the breaking down of a
large system into modules, well organized coding or classes, and complete and accurate documentation (Topper et.al.,
1994).

Yet another reason why structured methods impact developer efficiency and effectiveness is the percentage of time
developers actually spend programming. Brooks (1995) states that normally only one sixth of development time is spent
writing code. OO programming requires even less code than structured programming with procedural languages because
of its feature of inheritance and polymorphism (Bordoloi and Lee, 1994). Structured methods not only structure the
programming process, but the management processes which are involved in application development, such as meetings,
reporting, documenting, inspecting, testing, and communicating (Topper et. al., 1994). These processes exist in both the
traditional and OO environments.

Structured methods can also impact the quality and business value of a system. The structured methods performed at the
beginning of application development are especially critical for quality and business value. Estimation provides an early
analysis of costs to benefits. Data/process models, enterprise models, and design inspections can insure that the system
being developed is the one needed for the business (Topper et.al., 1994). The role of users in enterprise modeling and
design inspections can result in increased quality and business value. Code or object inspections and other forms of
testing can contribute to quality by insuring delivery of a minimum defect product (Chaar, Halliday, Bhandari, and
Chillarege, 1993).

The user satisfaction measures of timeliness, accuracy, format, and content of information in the system, as well as ease
of use of the system are impacted by structured methods. High levels of initial user satisfaction will result in lower
system maintenance costs (Yourdon, 1986; Topper et.al., 1994). While maintenance to keep pace with changes in the
business process will always be a reality, a system that

Page 29

meets user needs up front will require fewer changes to meet users' current needs.

The Role of Attitudes in Structured Methods

The attitude of developers toward structured methods can make a difference in performance. The Theory of Reasoned
Action (TRA) (Fishbein and Ajzen, 1975; Ajzen and Fishbein, 1980) provides a way of understanding the relationship
of attitudes toward technology and technology performance. In this theory, a person's performance of a behavior is a
result of behavioral intention (BI) to perform the behavior. This BI has two components, the person's attitude (A) and
subjective norms (SN) about the behavior.

BI is defined as the strength of a person's intention to perform a behavior. A is defined as positive or negative feelings
about performing the behavior, and SN refers to a person's perception of how people important to him or her feel about
performing the task.

Davis (1986) adapted the TRA into a Technology Acceptance Model (TAM) specifically designed to model user
acceptance of information systems. TAM differs from TRA in that it does not include SN as a determinant of BI. Davis,
Bagozzi, and Warshaw (1989) tested this model and confirmed that for user acceptance of information systems, SNA is
not a significant indicator of BI. This same study demonstrated that BI is determined by A and perceived usefulness (U).

This implies that all else being equal, people form intentions to perform behaviors which they hold positive attitudes
towards and perceive they can have positive results with.

Sherif, Sherif and Nebergall (1965) found in several studies that groups exhibit group behaviors and attitudes. As the
knowledge base, expectations, and realities of a group become more cohesive, cooperation and group behaviors begin to
appear (Sherif, 1962). Groups begin to exhibit a single attitude which can exhibit itself in contrast to that of other
groups, such as an "us against them" group attitude.

Ancona (1990) also found that the external interactions of groups have patterns similar to the internal patterns of the
members of the group. In this research, when individual members of a development team exhibit attitudes toward
structured methods, the group itself

Page 30

will display these attitudes. These attitudes, according to the TAM model, will lead to behavioral intentions and usage of
structured methods.

The Role of Training

Formal training in structured methods also impacts both structured methods and CASE usage and team performance. It
is not only the quantity and quality of training received that matters, it is the level of satisfaction with this training on the
part of developers which impacts usage and performance. In other words, great training is only great training if the
student perceives it as such. The ability to conceptualize the ideas behind structured methods and to see potential
benefits from using them can be gained through good training programs.

Structured Methods in This Study

This study measures the structured methods of estimation, data/process modeling, enterprise modeling, standards, design
inspection, code inspection, user training, and metrics collection. These methods were chosen using a traditional systems
development lifecycle model and an information engineering type of model (Topper et.al., 1994). Figure 1 shows these
models and the structured methods constructs they represent in the center of the figure.

Data was not available for all of the constructs listed in Figure 1, so only the methods listed above were chosen for
measurement and analysis. Each of the constructs chosen are defined below.

Estimation is defining application priorities and dependencies, product scope, and preliminary project feasibility.
Estimation allows I/S organizations to forecast the time and cost required to produce a system. This information can be
communicated to users and be used as a project management tool.

Data/process modeling is defined as producing data models, process/function models, and modeling the distribution of
data and process. Data/process modeling allows system developers to capture the nature and flow of information in the
system during early phases in development.

Enterprise modeling is defined as using observation and interview data to model the business model. Enterprise
modeling depicts

Page 31

Figure 1.
Initial models and constructs

the tasks and activities as well as the flows of the business process. It can be used to generate process diagrams for the
information system. Another purpose of enterprise modeling is to communicate the flow of information in a way
comprehensible to the user.

Standards is defined as the enforcement of compliance with standards. Standards are put in place for software
development for a variety of reasons. Standards can force developers to produce a product that is compatible with other
systems in the organization. Standards in documentation allow easier maintenance by people other than the original
developer. Standards can enforce both the way which systems are developed and the composition of the final system. An
example of a structural standard would be that the span of control of a program module cannot exceed four layers of
programming. An example of a process standard would be that every programmer conducts a code inspection once a
week.

Design inspection is defined as performing walkthroughs and reviews of the system design with users. The purpose of
design inspection is to look for flaws, weaknesses, errors, and omissions in the design before the code is written (Chaar,
et al., 1993).

Page 32

Code inspection is defined as performing walkthroughs and reviews of the code once it has been written. Code
inspections are normally performed by the programmer(s) who wrote the code, other members of the development team,
and perhaps other programmers in the organization. The purpose of code inspection is to look for flaws, weaknesses,
errors, and omissions in the code before it is put into production (Chaar, et al., 1993). This is especially critical since
defects are much less likely to be detected once a system is in production (Yourdon, 1986).

User training is defined as the percent of users who have been trained on the software application. Training is not
included as a part of all structured methodologies, but can be a useful tool in the hand -off of the system from the
developers to the users.

Metrics collection is defined as metrics data collected for the purpose of productivity measurement. Many measures are
collected by organizations. Examples of these metrics and measures are source lines of code, function points, labor
hours, cost, and complexity. This data is used by organizations to calculate the productivity of software development
activities.

The structured methods described above were tested for direct effects on development team performance. In addition,
two other constructs were used as mediating variables to test for effect on performance: attitude toward structured
methods and satisfaction with training in structured methods. Attitude toward structured methods is defined as the
attitude held by developers on the power, reliability, value, usefulness, and speed of structured methods. Structured
methods use is defined as the extent to which structured methods are used in the development team. Satisfaction with
structured methods training is defined as satisfaction with the amount and quality of formal education given in structured
methods.

The next section details the analysis performed on these variables.

Methodology and Results

In order to compare results across organizations, this study focused on large companies that had extensive in-house
Information Systems departments. To control for project size, development projects had to be 12-to-18 months in
planned duration. The selected projects were business applications with some strategic relevance to the company. Data
was collected on 105 projects at 22 sites of 15 organizations

Page 33

in the US and Canada. Contributing organizations represent financial services, manufacturing, and high-technology
industries from the Fortune 500. For each project, we surveyed the development team at the end of the requirements
phase of the project. All of the 105 teams provided information on structured methods usage, attitude, and training. The
projects consisted of a variety of computing infrastructures including mainframe, local networks, uncoupled work
stations, mixed vendor shops, and rudimentary client-server systems. Studied projects made use of more than 20
different CASE tools. Data on structured methods use, training, and attitude was given by the developers. Performance
data was collected from information systems and user managers who are considered the stakeholders of the systems.

The specific structured methods defined in the previous section were tested for impact on performance using stepwise
regression. In stepwise regression, all of the structured methods are added to a model of performance based on a specific
dependent variable such as quality. The regression procedure adds variables one at a time, testing for contribution to
performance, and keeping variables which contribute while dropping those that do not. Figures 2 and 3 show the results
of the stepwise regression procedures. The number of teams in these regressions was 54.

Figure 2 shows the structured methods which contribute to team efficiency, overall user satisfaction, business value and
quality. Design inspections are shown to be a significant contributor to team efficiency at the .02 significance level.
Design inspections and enterprise modeling both contribute to overall user satisfaction with a system. Design inspections
are significant at the .05 level, while enterprise modeling is significant at the .10 level. Design inspection also
contributes to system quality as rated by the stakeholders of the system. Design inspection is significant at the .004 level.
Estimation contributes to the business value as perceived by stakeholder of the system. Estimation is significant at
the .04 level.

Figure 3 shows that structured methods also contribute to the timeliness, accuracy, content, and format of information,
as well as ease of use of the system. Code inspection, enterprise modeling, and metrics collection contribute to
timeliness of information rated by the end users of the system. Code inspection is significant at the .10 level, enterprise
modeling at the .06 level, and metrics collection at the .10

Page 34

Figure 2.
Structured methods contribution to performance

level. Enterprise modeling and design inspection contribute to accuracy of information and format of information.
Enterprise modeling is significant at the .10 level for both accuracy and format, while design inspection is significant at
the .02 level for accuracy and the .08 level for format. Content of information is impacted by enterprise modeling and
code inspection. Enterprise modeling is significant at the .09 level, while code inspection is significant at the .07 level.
Design inspections contribute to the ease of use of the system. Design inspection is significant at the .01 level.

Structured methods were also analyzed for direct effects on performance with attitudes toward structured methods and
satisfaction with training in structured methods used as mediating variables. Correlation analysis was used to detect
relationships. Table 1 shows the relationship of structured methods to performance for teams with positive attitudes
toward structured methods.

Table 1 shows that design inspections, code inspections, and enterprise modeling have the strongest relationship to
performance for teams with positive attitudes toward structured methods. Design and code inspections are related to user
satisfaction, ease of use, accuracy and content of information. Enterprise modeling is related to the user satisfaction, ease
of use, and content of the system. Table 2

Page 35

Figure 3.
Structured methods contribution to performance.

Table 1: Relationship of Specific Structured Methods on Performance (T3 part V) for Teams with Positive
Attitudes Toward Structured Methods. N = 30, *<.05, **<.01

Method/
Measure

User Satisfaction Format Accuracy Ease of Use Content

Data/ process
modeling

.35 .28 .22 .25 .31

Design
Inspection

.42* .34 .51** .40* .36*

Code inspection .41* .32 .49** .35* .37*

Enterprise
Modeling

.39* .34 .32 .36* .37*

User Training .35 .36 .22 .36 .33

Estimation .00 -.02 .05 -.14 .01

Standards .00 -.22 .04 -.32 .06

Metrics
Collection

.03 -.14 .17 -.06 .15

Page 36

Table 2: Relationship of Specific Structured Methods on Performance for Teams Satisfied With Training in
Structured Methods. N=30, *<.05, **<.01

Method/
Measure

User Satisfaction Format Accuracy Ease of Use Content

Data/process
modeling

.52 .57 .45 .54 .55

Design
Inspection

.42 .42 .41 .47 .34

Code inspection .43 .38 .45 .38 .40

Enterprise
Modeling

.69** .70** .59 .67** .67**

User Training .08 .16 .12 .13 .04

Estimation .20 .26 .13 .25 .16

Standards .20 .15 .18 .18 .18

Metrics
Collection

-.00 .13 .03 .09 -.09

shows the relationship of structured methods to performance for teams satisfied with training in structured methods.

Enterprise modeling is the only structured method which shows a positive correlation to performance for teams satisfied
with training in structured methods. Enterprise modeling is related to user satisfaction, ease of use, format and content of
information.

Mapping the Results to OO Methods

This research indicates that structured methods have a direct impact on the development team's performance. Design
inspections contribute to user satisfaction, team efficiency, the quality of the work performed on the final product, the
accuracy and the format of the information, and the ease of use of the final system. These results support results (Chaar
et. al., 1993) that indicate that design inspections detect defects in system documentation, system function, and system
interfaces. These defects must be detected early in the lifecycle to insure that the system delivered is the system ordered.
Design inspections can also lead to confidence on the part of the users that the development team is performing the work
ordered (Yourdon, 1986). In addition to being a method for error detection, design inspection is a management tool for
good developer - user interface.

Page 37

Design inspections are critical to Object Oriented development. OO development is by its nature incremental,
concurrent, and iterative (Bordoloi and Lee, 1994). One of the more popular software development life cycle models for
OO development is the spiral model (Boehm, 1986). Paper designs and prototype subsystems are released to the users
and/or experts for comment, verification, and validation (Graham, 1994). The users see the system much earlier than
they would under the waterfall development model, and design mistakes can be corrected much more quickly.
Additional benefits to this prototyping approach include the much earlier testing of technical feasibility, the finalizing of
reusable components and library classes, and the elimination of the duplication of functionality among classes. By
releasing parts of the system to the users, transitioning to the new system is much easier, and developers- enhanced
credibility and communication with the user community is greatly facilitated.

This research also shows the importance of code inspections to the timeliness of information and to the content of
information. Code inspections reveal many checking and documentation errors (Chaar et al., 1993). A second inspection
can be critical in eliminating operational semantic errors. The first code inspection can detect content defects; whereas
the second code inspection can detect operational defects that can impact performance measures (for example,
timeliness). It should be noted that design and code inspections are primarily manual processes which are difficult to
automate with tools such as CASE.

Object Oriented methods blur the lines between analysis, design, and implementation. In traditional structured methods,
each phase of development creates a different model. In systems analysis, the high level flow of the software is
developed and is modeled in a data flow diagram or a flowchart. Systems design breaks the software into detailed
functional components and models these in a functional decomposition diagram. Coding creates the actual software.
Each of these phases requires a sort of ''translation" of the phase before it.

Object Oriented software development, on the other hand, is "seamless." The same model is used for analysis, design,
and implementation. This places much more emphasis on rigorous inspection to ensure that the design elements required
by each step is actually produced. It is very tempting in a seamless environment to step directly from analysis into
coding without passing through the de-

TE
AM
FL
Y

Team-Fly®

Page 38

tailed design step. Graham (1994) recommends testing every object as it its produced, and testing it again as it becomes
part of a classification structure.

This research indicates that enterprise modeling contributes to the timeliness, the accuracy, the format, and the content
of information, as well as to user satisfaction with the final software product. Enterprise modeling is used extensively in
the Object Oriented paradigm. However, frequently OO enterprise modeling follows traditional data modeling: entities
and their attributes are identified, and then their behavior is modeled. This generally produces a system that may not
meet the needs of the user and may require a great deal of rework. This problem suggests that Object Oriented enterprise
modeling must be tied much closer to the user's business processes. Some sort of process model must be produced and
objects identified from it rather than "in the blind."

Other problem areas in Object Oriented enterprise modeling include abstraction, problem decomposition, separating
analysis (the problem space) from the design (the solution space), and distributing the behavior of the enterprise. These
problems may be addressed by focusing a relatively larger proportion of development time on enterprise modeling issues
by using examples, discussions, and analysis and design evaluations. This allows analysts to explore alternative
representations of a problem from different perspectives (Puhr, Nelson, Monarchi, 1995). As in traditional structured
methodologies, time spent up front in enterprise modeling pays off throughout the OO development process.

Estimation contributes to the business value of delivered systems and metrics collection contributes to the timeliness of
information. Traditionally, metrics have been used for two purposes: for the estimation of development effort and for the
prediction of maintenance effort (defects). Although Object Oriented metrics research has received considerable interest
lately, few metrics have emerged from academic research into commercial practice, and there are even fewer
commercially available tools for collecting and evaluating OO metrics.

This research also investigated the effect that structured methods have on the performance of the development team
when the teams have a positive attitude towards methods in general, or when they are satisfied with the training they
received in the methods. Once again design inspection, code inspection and enterprise modeling are sig-

Page 39

nificantly related to development team performance. This suggests several things. The early verification, validation, and
error detection provided by design and code inspections lead to a better overall product. However, these methods are
time consuming and must be included as part of the original time schedule estimates.

The same holds for the Object Oriented paradigm. From a managerial viewpoint, the OO paradigm promises reuse and
easy extensibility due to OO's richer semantic constructs. However, this requires much more effort "up front" and
consequently more time before a product is seen by the customer. Estimating practices must change to reflect this
change (Graham, 1994). Teams that have positive attitudes towards the methods are more likely to be willing to take the
time needed to perform these activities and are more likely to defend the methods to an anxious customer. Enterprise
modeling, prototyping, design inspections, and code inspections bring the customer into the development process and
help enhance communication. These methods allow early detection of disparities between user expectations and
developer understanding.

Teams who are satisfied with training in structured methods achieve results through the use of enterprise modeling.
Perhaps it is this training that "sells" a development team on the value of this method. Mangers have long recognized the
need to link development activities to the enterprise (Yourdon, 1986), and training in structured methods appears to be a
way of transferring this need to developers. Puhr, Nelson, and Monarchi (1995) have found that the concepts of OO
methodology by themselves are not difficult to grasp, but that difficulty occurs in seeing how the concepts are
manifested in designs and programs. Therefore, training may be even more critical to the successful use of OO methods
than it is to traditional methods use.

This study has shown the importance of the structured methods of design inspection, code inspection, and enterprise
modeling in traditional software development projects. Organizations should consider the importance of these activities
when implementing a structured methodology, be it in the traditional or OO paradigm. This study shows a clear link
between the use of methods and the performance of internally developed software. The lessons learned from these
traditional versions of design inspection, code inspection, and enterprise modeling can be used by both practitioners and
future researchers of the Object Oriented paradigm.

Page 40

References

Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior, Prentice Hall, Englewood,
NJ.

Aktas, A. Z. (1981). Structured Analysis & Design of Information Systems , Prentice Hall, Englewood, N.J

Ashok, S. (1981). An Approach to Structured MIS Development, MIS Quarterly, 5,4, 19-33.

Baker, F. T. (1977). Chief Programmer Team Management of Production Programming. IBM Systems Journal, 11,
1,.56-73.

Banker, R., & Kauffman, R. (1991). Reuse and Productivity in Integrated Computer-Aided Software Engineering: An
Empirical Study. MIS Quarterly, 15,3, 375-402.

Boehm, B. W. (1986). A Spiral Model of Software Development and Enhancement. Software Engineering Notes , 11 (4).

Bordoloi, Bijoy & Min-Hwa Lee (1994, Winter). An Object-Oriented View. Information Systems Management.

Brooks, F. P., Jr. (1995). The Mythical Man -Month. Addison -Wesley Publishing Company, Reading, Massachusetts.

Chaar, J.K., Halliday, M.J., Bhandari, I.. S., & Chillarege, R. (1993). InProcess Evaluation for Software Inspection and
Test. IEEE Transactions on Software Engineering , 19,11, 1055-1070.

Chapin, N. (1979). Some Structured Analysis Techniques. Data Base, 10,3,. 16 -23.

Chen, P. P. Entity -Relationship Model: Toward a Unified View of Data. ACM Transaction on Database, 1,1.

Conway, J. (1993). OOP: An academic perspective., Education and Training Supplement to SIGS Publications , 4-7.

Crinnion, J. (1991). Evolutionary Systems Development: A Practical Guide to the Use of Prototyping Within a
Structured Systems Methodology. Plenum Press, NY.

Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End -User Information Systems:
Theory and Results. Doctoral Dissertation, Sloan School of Management, Massachusetts Institute of Technology .

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of
Two Theoretical Models. Management Science , 35,8.

Page 41

DeMarco, T. (1978). Structured Analysis and System Specification. Yourdan Press, New York.

Dolk, D. R. (1988). Model Management and Structured Modeling: The Role of Information Resource Dictionary
Systems. Communications of the ACM, 31,6. 704-718.

Downs, E. (1992). Structured Systems Analysis and Design Method Application. Prentice-Hall, Hertfordshire, UK.

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis. IEEE Transactions on Software Engineering ,
20, 3, 199-206.

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research.
Addison Wesley, Reading, Context MA.

Gane, C., & Sarson, C. (1979). Structured Systems Analysis: Tools and Techniques. Prentice-Hall, Englewood New
Jersey.

Gane, C. (1989). Rapid System Development: Using Structured Techniques and Relational Technology. Prentice-Hall,
Englewood New Jersey.

Graham, I. (1994). Object Oriented Methods. Addison-Wesley Publishing Company, Wokingham, England.

Henderson-Sellers, B., & Edwards, J. M. (1990). The Object Oriented Systems Lifecycle. Communications of the ACM ,
33, 9, 142-159.

Martin, J. & McClure, C. (1988). Structured Techniques: The Basis For CASE. Prentice Hall, Englewood Cliffs,
N.J.

Orr, K.T., Gane, C., Yourdan, E., Chen, P.P., & Constantine, L.L. (1989, April). Methodology: The Experts Speak.
BYTE, 221-233.

Orr, K. T. (1977). Structured Systems Development. Yourdan Press, New York..

Puhr, G. I., Nelson, H. J., & David, E. M. (1995). Teaching Object-Oriented Systems

Development: Challenges and Recommendations. Object Oriented Systems , 2.

Ross D. T., & Shoman, K.E. Jr. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on
Software Engineering , SE-3, 1.

Sanden, B. (1989). Entity Lifecycle Modeling and Structured Analysis in Real-Time Software Design--A Comparison.
Communications of the ACM, 32, 12,. 1458-1466.

Sherif, C., W., Sherif, M., & Nebergall, R. E. (1965). Attitude and Attitude Change. W. B. Saunders Company,
Philadelphia and London.

Sherif, M. (1962, ed). Intergroup Relations and Leadership. John Wiley

Page 42

and Sons, Inc., New York and London.

Stevens, W. P., Myers, G. J., & Constantine, L.L. (1974). Structured Design. IBM Systems Journal, 13, 2.

Topper, A., Ouellete, D., & Jorgensen, P. (1994). Structured Methods: Merging Models, Techniques , and CASE.
McGraw-Hill, Inc., NY.

Tung, Sho -Huan (1989). A Structured Method for Literate Programming. Structured Programming , 10, 2, 113-120.

Vessey, I., & Weber, R. (1986). Structured Tools and Conditional Logic: An Empirical Investigation. Communications
of the ACM, 29, 1.

Yourdan, E. (1989). Managing the Structured Techniques: Strategies for Software Development in the 1990's. Yourdan
Press/Prentice Hall, New York.

Yourdan, E. (1989). Modern Structured Analysis. Yourdan Press/Prentice Hall, New York.

Yourdan, E. (1975). Techniques of Program Structure and Design. Prentice Hall, Englewood, New Jersey.

Page 43

Chapter III—
Object Oriented Testing in Software Development

Samuel K. A. Agyemang
IBM Global Services

Object oriented technology is still growing and has not yet matured. Many articles have been written on object oriented
software development processes, particularly in the area of testing. Most of the publications seem to agree with the fact
that object oriented testing is a challenging aspect of the software development process. The main reason for this view
seems to revolve around the fact that the objects and the code are inseparable and also, the idea of inheritance. Despite
these views, the publications all seem to agree on one aspect, that object oriented when successfully tested leaves a
better-maintained product compared to the traditional non-object oriented software. Object oriented software makes
better maintainable software; it also has an added advantage over traditional software development because in the final
analysis, it will cost less by shortening the development time as well as cutting down the cost of maintenance.

Object Oriented Testing

Object oriented software involves the methods to organize both information and the process that manipulates that
information in accordance with the real world objects that the information describes.

Page 44

The objects have attributes whose values define the state of the object and these also determine the value of the objects.
(Kung, 1995) Object oriented software could be described to be just about objects. The concept behind object orientation
is that it is closer to a person's perception of reality. Object orientation gives a new and powerful formula for developing
computer software which makes it unique from the traditional form of software development. In a world where new
products are emerging all the time, particularly in this Internet age, object orientation could help to improve the
reliability and speed with which new software is developed. There could also be an added advantage of maintaining such
software which is one of the problems in software development. There has already been a lot of interest generated about
object oriented technology and the advantages it brings to the software development process which may be lacking in
the traditional process. The powerful features of object orientation which are encapsulation, re -usability and inheritance
also introduce problems for testing and maintenance, the anchor of a good software product. Most developers have tried
to circumvent this problem by advocating the use of conventional testing tools for object oriented software. (Kung,
1995).

Object oriented development process provides some powerful and interesting features for software development (Hsia et
al., 1998). It also brings to light some problems in the areas of quality of the software, particularly in the areas of testing
and maintenance.

This will be the focus of this chapter, looking at some of the testing techniques and the problems of testing in
determining if object oriented technology has any advantages over the traditional process. The chapter will look at
aspects of testing in the object oriented technology, the issues involved and how they make object a quality product and
the problems that may be encountered. Due to the growing importance of this technology, there has been a lot of testing
strategies each trying to explain the advantages of object orientation. In this chapter, a critical view of some of the
articles on the topic will be discussed to show the advantages object orientation has over traditional process. By the use
of encapsulation, the designer could narrow the possible interdependencies with other components by way of interface
without affecting the other units (Perry, 1990). Even though object oriented programming has some advantages over
traditional, particularly by the use of the inheritance and encapsulation techniques, it also raises

Page 45

some problems of testing (Perry, 1990). The problem with inheritance and encapsulation may be that of accessibility.
Since each class may inherit instance variables of its superclass, this could lead to readability problems in the code
because of different definitions applied to classes in the hierarchy. Moreover, each class can also add to the list while the
class cannot change the type of inherited instance (Taenzer et al., 1989).

Re-Usability and Testing

Object oriented technology has the advantage of re-usability. This makes it possible for a developer to tie new objects
into existing ones and by so doing, avoid duplication of efforts. The reuse proposition has gained much currency because
it makes it easier to construct a new application with few modifications as well as adaptations. The use of these
techniques and properties renders the resulting software systems more reliable, easy to maintain as well as reuse. The
likelihood of detecting an error and the objective of cutting costs and saving time rests with testing. The re -usability of
the products makes sense because it can recoup the investment through effects of scale. After all, one of the most
important goals of software development is to improve the quality. In the traditional software development, the theory
and methodology provide foundation to access the quality of the product which is not so with object technology. Thus,
testing becomes a problem with object oriented design. Testing is necessary in the development of a stable and robust
system using object oriented technology.

The re-usability library is supposed to be made up of a set of well-tested class. The library contains the user documents,
development components and class implementations. Since these have already been used, they have been tested, which
at least is necessary on the grounds of being economical. One of the propositions for reuse is the Generic Development
Process for Object Oriented Applications. This process comes in three design flavors of non-optimized phase, the
generic phase and the component aspect. In combination these three describe the application development process with
the sole aim to quicken the reuse at the very early stages. The process makes the assumption that there will be in the later
stages, applications to which these generic ones will be automatically applicable. The developer again makes a judgment
call as to the general usability of the product.

Page 46

However, there is no indication that there is a single technique which can be relied upon completely. In fact, re-use is
attractive if the developer can guarantee that the components will be correct to work smoothly with the systems that will
rely on them, rather than harming them.

Inheritance in object oriented processes also illustrates flexibility and promotes re-use. In inheritance, the properties of
one class are defined for all its subclasses. They in turn inherit its properties. This makes it possible for the software that
implements the operations of the superclass to use its subclass. There could be an instance of an object class having
more than one superclass (Kung, 1995). An example is a graduate teaching assistant who could be both a student and
employee. Methods inherited from one superclass have to be retested in the context of the subclass since the superclass
may not include every occurrence of the subclass. It makes it possible to reuse components with similar behavior. This is
one of the best ways to divide a program into an economical set of classes. An example could be the automobile which
as a superclass could include electric powered cars, gas-powered cars, buses, trucks and a host of others. This can help
speed up the development process which will need only a few lines of code, thereby, culminating in lower cost (Siegel,
1996).

Re-use sometimes requires some prerequisites such as a competitive market. This is necessary because in a competitive
market time is crucial to reduce cost. There is no doubt that developing a complete application from scratch is costly, so
if there is any method that can be used to cut costs, it should be applied. Above all, there should be a need for a
supportive corporate culture. To have a successful re-use, developers should be well compensated for their work and
have a free hand and time to be able to build robust, efficient and re-usable components. The usefulness of a reusable
component hinges on the quality of people who put them together. They should include people who have the skills and
the ability to understand technical objects and be able to maintain quality reviews. The team should be headed by a
leader who is focused and productive. In the absence of these factors, the development process is time consuming and
involves many errors which can be costly. Therefore, for reuse to be successful organizations must have the collective
vision to support reusable software. Object orientation is a promising technology for increasing the reuse of already used
components (Schmidt, 1997). Object oriented compo-

Page 47

nents are becoming increasingly mainstream. This gives object orientation an advantage over the traditional software
development. Software testing is a difficult process which demands preparation in the execution of tends of thousands of
test cases and test data sets. This requires extensive support and the possibility of omitting certain parts.

Dynamic Testing

The method where an implementation is decided by the system since it is not known until during the runtime. Dynamic
testing helps to locate faults which might be in the executable data. The tests are applied to the models and that helps to
speed up the process and keep the formal models scrutinized properly for errors. The execution here is performed under
typical circumstances to verify conformance. In the traditional method, the test detects errors which reflect on the
implementation of each method. Thus, polymorphism makes it possible to use one name and protocol interchangeably
with objects of different classes which may still remain in execution.

There is a widely held view that dynamic testing will successfully uncover errors. The system will choose what type of
method to employ during the execution. The developer leaves the choice of method to the system as to which one to use
based primarily on the type of object. The method goes through the compilation format to get rid of class interface
incompatibles. The developer then paraphrases the code line by line to uncover errors in coding. There is a need for a
tool to get this process done efficiently. In most cases, scripts are defined to aid this form of testing. Those scripts rely
on what is referred to as grey-box testing which operates under a combination of functional and structural testing.

Dynamic testing demands that test cases be designed accompanied by a selection of test dates. This is, however, a very
complex method which confirms that testing in object oriented technology is a major challenge. Although object
oriented technology supports many kinds of fault prevention, testing still remains necessary to maximize operational
reliability.

Cluster and Class Testing

Clusters are a collection of classes which relate to each other by way of functionality. Each one of these clusters is based
on the

TE
AM
FL
Y

Team-Fly®

Page 48

behavior of the system. Cluster testing is less costly compared to class testing. Library clusters come about as a result of
implementation issues. Most of the classes in the cluster have already been tested. Anytime a change is made to a
previously tested software, there is the need to run the cluster test. There is, however, the tendency to pile on the
clusters. Finally, they become too large that there will not be enough time to review the code. When this happens, the
goal is defeated because it was supposed to cost less; but since errors may be detected in the final product, it is going to
be expensive to fix those errors. However, this problem can be eliminated. This is done by doing class test and also a
combination of cluster and class tests which may be automated. Cluster testing is comprised of three stages. The initial
testing of the cluster is documented. The next stage is to review test plan. The final stage is the execution and recording
of the results of the test. Within the cluster test plan, there are required tests. The functions to be tested must have been
noted from the object oriented analysis and design stage. Included also is the list of configurations to be tested, the
classes in the cluster, as well as the test cases (Murphy, et al., 1994). One such tool designed for cluster testing is
Automated Class Exerciser (ACE). The cluster testing, when used efficiently, can lead to discovering very encouraging
results. The use of tools like ACE can help developers to concentrate on specific test cases. This is an advantage over the
traditional software development methods (Murphy et al., 1994). The rising cost of software development products,
makes object orientation an advantage. Cluster and class testing used in object oriented software development make it
easier to locate errors and fix them early to reduce costs. By the use of testing tools, developers can perform regression
testing which is easier to review. These tools can be automated to speed up the testing process (Murphy et al., 1994).
The object models that have been stored can be re-used for automated testing and cutting costs (Poston, 1994).

Integration Testing

Integration testing emphasizes fundamentals of behavior. Here classes are integrated and tested according to the test
order, and the emphasis is on the function and the interactions between behavior (Kung et al., 1995). The testing is
concerned with the behavior of the software and less concerned with the structure. In the traditional testing, the software
is in imperative language with functional struc-

Page 49

ture in view. However, this is not so with object orientation. In the imperative structural form, it is descriptive and in a
control flow sequence, where theory based testing is the norm. What is being tested is known and covers all the metrics.
In the object oriented programming, where the languages may be imperative, it is evident at the integration level. Where
functionality is primary, the emphasis is on structure rather than behavior. The structure of the system becomes the
primary motive and of less concern is the behavior. Testing therefore becomes problematic. The very idea of function is
to make sure that the system functions correctly or properly. On the other hand, object oriented software is different
from traditional structural software. Here the program is minimized, hence, there does not seem to be a well defined
structure. This to some extent can be an advantage for object orientation because there is no structure upon which testing
can be based (Jorgensen et al., 1994). The problem of testing in object orientation arises because of the erroneous
attempt to apply traditional testing to object oriented software. Software testing may be primarily focused on what the
program does. It is concerned with the structure of the program. When developers produce a software, it is the
satisfaction of their clients as to how the program behaves; they could care less about its structure. If the customer is
satisfied that the program is fulfilling his needs, the engineers would have done a good job. Objects by behavior show
some form of integration, but not structure (Jorgensen et al., 1994)

This again can be a problem with regard to testing of object orientation because objects may look alike and jointly
correct, but in their composition, there could be errors. In object oriented technology, this poses a problem since it uses
encapsulation. By encapsulation, a designer hides the data structures and implementation details of the procedures.
Access to this private data is by operation of the object (Kung, 1995). The whole idea of encapsulation is to hide within
and to be reusable because they have already been tested. Encapsulation gives an invocation of chain member function.
However, unit testing cannot be proven to discover integration level problems. The use of encapsulation in integration
testing becomes a problem since it seems to justify unit testing. If a superclass is modified, then there would be a need to
retest all its inherited methods. However, it becomes a problem if after a subclass is added, we might have to be called to
retest the methods that were inherited from it superclass. On the other hand,

Page 50

if the new subclass is an extension of the superclass and there is no interaction between, then there is no need for
retesting. It must be noted that not all object oriented languages support multiple inheritance. In cases where they do, it
only becomes an issue if the same component inherits along divergent paths (Perry, 1990). Integration testing can reveal
a lot of errors which may not be detected in unit testing. These errors are visible during the interactive stages among
classes. In object orientation, every class inherits an attribute from a superclass. This being the case, the initial
methodology assumes that a class should necessarily call the initialization code of its superclass. But there have been
problems concerning a lack of invocation from the superclass. When this occurs the result is initialization error.

There is also the integration of the black and white -box integration process which relies on fundamental pairs. The
importance of this theory is that the use of the finite set from the blackbox theory is deficient, and therefore, there is the
proposed heuristic whitebox technique. This testing is by implication the testing of the source code (Perry, 1990). Under
this form of testing the statements and all aspects of the program like data flow paths must be tested in execution. These
two forms of testing are intertwined. The weakness of the specification based testing is complemented by the program
based testing (Perry, 1990). Specification based testing is about how specific criteria is met; it does not address the
portions of the program that need to be executed in order to meet each of the specified parts. The program based testing
does not tell us anything about the functional performance. A combination of both would be a perfect mix. In
specification based testing, when a program is said to be adequately tested, it presupposes that all the functions are
covered. However, one test which is adequate might not necessarily be adequate for the other. Equivalent programs
could have different implementations. Thus, a test that executes one implementation could not be expected to execute all
the other statements of the other implementation. Again, two programs which may look similar might require separate
tests (Perry, 1990). The testing covers fundamental pair, which in mathematics is as good as that of all the equivalent
ground terms. (Chen et al., 1998). On the surface the theory sounds plausible, but the problem is that it does not expose
the errors in the program. To counter this deficiency is the proposition of a supplemental test made of several subtasks
which are often combined into a methodological framework. In the

Page 51

object oriented methodology, the data and code are merged together, and this makes it easier to use since it is just
messages being sent by way of interface. When the need to create a new class comes up, a subclass could be created and
the inheritance theory permits re-use.

Quality Metrics

There has always been a problem as to how to measure the quality of a software product. The methods used in
measuring the quality of software in the traditional way are a starting point which needs to be built upon in the object
oriented process. This is because of the unique characteristics of object oriented technology. Software metrics can be
used to identify where to allocate resources which become very important in decision making. Managers and developers
need this reliable information in their decisions. Testing of systems is one such time consuming activity that needs to be
identified so scarce resources can be used where needed most (Braude, 1998). There is the view that non-object product
metrics does not satisfy assessment of the quality of object oriented software systems (Braude, 1998). However, metrics
if they are to be reliable must be validated. This is necessary since there could be a measure seemingly correct, but might
be of no value to the problem being evaluated.

Object orientation has an advantage of reuse, encapsulation and inheritance. There can be different instances within an
organization which need to be taken into consideration, or the system could even be different from the original one for
which the code was written. In addition to this, is the question of partial use of the re-use code. In the software
development process, from analysis through design, there must be a conscious effort thoroughout to produce a quality
product. The quality of the product has its genesis in this area of development which becomes the link between the
developer and the final product. If the design is faulty, it is not going to be acceptable to the user. In the final analysis it
is going to cost more at this stage for the product. There is always the likelihood that the cost of fixing the errors at the
end stage of the final product will be about ten fold the cost at the design and analysis stage. The evaluation of object
oriented software may be measured in terms of how reliable the product is and the less complex it is. There is also the
need to be concerned as to how many more times the software could be used. The quality of the product will rest on how
good the design was. Reliability then becomes the criteria upon which

Page 52

the quality is measured. This is not always the case with every software product.

Good software has to be user-friendly. Basically, it must be simple enough for the user to use with minimal problem.
One of the advantages of object oriented software is re-usability. Object oriented techniques in general can be said to
improve the software design process and facilitate modification and reuse in a way traditional does not. The economic
advantage of re-use cannot be overemphasized. The ability to rely on quality re-usable products makes it faster and less
costly to produce. It also gives developers confidence to know that there already exists tested products which can be of
use. This is mainly with the design process, which may not be applicable to all object oriented software products. The
fact that some of these factors may be in conflict is the reason why object oriented testing is a difficult proposition.
These can be used as guidelines upon which a developer may build a quality software.

Validation and Verification Testing

In the object oriented process, testing could be divided into verification and validation. In validation, there is first the
static analysis of the use cases and object model to find out if they are consistent. Finally, it is to check the completeness
of the specification by inquiries from the customer. In the verification phase, we want to know if the engineers are
building the correct system. This is necessary because fundamentals of failure arise from the fact that the software
doesn't do what the users wanted. Coupled with this is the possibility that the developers might have gotten it wrong
from the analysis stage and, therefore did not know exactly what the users wanted. Validation answers the question:
Does this product meet the set of requirements for which it was made? The engineers conduct tests to ascertain whether
the right objects are being developed to meet user requirements. The tests are necessary to observe what the reactions of
this new object is going to be as well as the interactions and effect it might also have.

The verification process, on the other hand, tends to be more detailed and is conducted not at the end, but in the course
of the development. Verification process is about functionality and this occurs during the execution of tests against the
software. This process deals with later discovery at a point when the design or implementa-

Page 53

tion fails. In the traditional development methodology, the testing process is not often integrated with the development
process. There ha e been proposals for an integrated object oriented testing in all aspects of development. The emphasis
is to be on the objects models from the domain analysis stage where they are refined to the next stage of the application
analysis. By this stage the product would have been iteratively and incrementally tested. The errors would have been
removed at the earliest possible time to minimize the cost. The author Shel Siegel quotes Barry Boehm who studied the
relative cost of fixing these problems. He confirms that the relative cost is less at the earliest possible time than at the
later stages. According to Boehm's account, it is about five times more costly at the design stage, ten times at the coding
stage and between 40 to 1,000 times at the maintenance stage (Siegel, 1996).

The Iterative Process

This process help continuous improvement of the examination of the goals and evaluation of the level of achievement.
Unlike the traditional method of software development, the object oriented process emphasizes the need for care during
the analysis and design stages. In most cases it has been established that the failures at the requirement stage tend to be
large in part affecting the quality of the product. The process reviews the previous objects and evaluate the reusability of
the objects to complete the test for quality assurance. There are advantages of testing in object orientation using high
level testing on formal specifications and usage profiles. The behavior of the software system is specified in object
oriented format (Chan et al., 1998). The prototyping and implementing of object oriented programs can be made faster
by using a conceptual clear object oriented style specification. With specification based testing, a new technique is
thereby incorporated into the testing process. This could be combined with usage based testing to effectively complete
the most widely used parts of a software system. However, these techniques are not unique to object oriented programs,
they could be applied to traditional software development (Chang, et al. 1998). The idea behind this is that software
development begins with a requirement specification. In usage based testing, the difference is in the underlying
principles between traditional testing and object oriented testing. In the tradi-

Page 54

tional software, tests could be generated through the usage of modules based on their probabilities. This is where object
orientation differs from traditional software, since object orientation design depends on classes and objects. It does
becomes difficult to develop a form of structure. The objects have operations and attributes which are a reflection of the
state of the object (Chang, et al. 1998).

When a conclusion is drawn that a program has been adequately tested, then by implication, it has been covered
according to the criteria selected (Perry, 1990). The idea here is to find out if the program meets its functional
specifications. Sometimes this is done by the use of a tool. However, most of these tools cover mathematically designed
subroutines. In another form of testing, the formal specification method is applied to avoid going through the details to
collect implementation information. This gives the definition of class structure as well as perfect information on the
behavior of the operation. At the end of the construction of the test scenario, test cases based on the data profile can be
generated. An enhance state transition diagram (ESTD) can be derived from the formal specification system. The
multilayer nature gives a tester a design between specification and usage and, thus, makes it possible for the user to view
the design in an understandable way. The advantage is that it is possible to represent a class object in an ESTD then the
whole system could be done in the same way. It becomes easier to also represent a single diagram drawn from a
complex system. Testers relying on the state model could also check the execution programs in accordance with
specification. The quality of the object oriented product should be able to address all the phases of the software cycle.
While it could be said that object oriented development methods have increased the quality of software, there are still
some issues with testing to determine the quality of the product. The articles reviewed while trying to explain how the
object oriented process is a better form to use in software development, concedes that there are inherent problems too.
For testing to be done on a program, the testers would have to define the objective of such a test. The reason is to ensure
that a comprehensive test could done. However there is not one single algorithm that can be said to be feasible for any
given requirement (Chen et al., 1998). Most of these testing processes are impeded by issues arising from encapsulation
and inheritance. The current testing processes all seem to lack the basis

Page 55

to efficiently perform the task necessary to produce a quality software. However, the process is an improvement on the
traditional development process. One of the reasons why testing is considered problematic is because it is not integrated
into the development infrastructure. If and when the two processes are integrated, the end result would be a better
product. The approach would begin the testing process early so there would be early error detection, and this could be
fixed quickly. The end result is likely to be a quality product (McGregor, 1994).

Conclusion

The object oriented testing process takes advantage of early testing in the development life cycle. This, therefore, could
result in further improvements and also shorten the time spent to achieve the desired quality. However, the integrated
testing approach is too visible in the object oriented technology. It gives an impression, sometimes erroneously, that
more time is being directed toward testing. In the long run, it could shorten the amount of effort which is needed to be
employed for a comprehensive testing process. In the software development process, testing is costly so any method to
cut that is a step in the right direction. Irrespective of the method employed, integrated testing reduces the cost in the
development process. It is difficult to predict the future of any software, but one thing is certain, the purported demise of
the object oriented technology is not here yet. The fact that no one can safely say what kind of sophisticated system our
users might want without the use of object technology in the process, that confirms that object oriented technology is
here to stay. This becomes even more obvious with the Web development applications. In the traditional development
process, the basic unit of testing is a subprogram; whereas, object oriented technology relies on a class. Even though
traditional methods may be efficient, they cannot be applied to objects without some form of adaptation to object
orientation. Areas which for a long time resisted object technology are no longer immune. Databases like Oracle 8 now
support subobjects which have their own identities. These databases are now allowing the benefits of object orientation
and sometimes applications. It is true that object orientation has made a lot of progress into the software development, it
will continue for sometime to be just

Page 56

a fraction of the traditional market especially in the databases. Testing should be made an integral part of the software
development process. Testing in object orientation, no matter how difficult can detect faults in the software and give
some level of confidence.

References

Arnold, Thomas R, Fuson, William A (1994, Sept.) Testing ''In A Perfect World" Communications of the ACM, 78-86.

Barbey, Stephane, Ammann, Manuel & Strohmeier, Alfred (1994). Open Issues in "Testing Object Oriented Software"
ECSQ '94 (European Conference on Software Quality), Basel, Switzerland (Abstract)

Barbey, Stephane, Strohmeier, Alfred (1994) "The Problematics of Testing Object Oriented Software" SQM '94 Second
Conference on Software Quality Management, Edinburgh, Scotland, UK (Abstract)

Binder, Robert V. (1994 September) Design for Testability in Object-Oriented Systems Communications of the ACM,
87-101.

Binder, Robert V. (1995) Object Oriented Testing: Myth and Reality http://www.rbsc.com/pages/myths.html

Binder, Robert V. (1996) The FREE Approach to Testing Object Oriented Software: An Overview.
http://www.rbsc.com/pages/FREE.html

Chen, Huo Yan, Tse, T.H, Chan, F.T. & Chen, T.Y In Black and White: An Integrated Approach to Class Level Testing
of Object-Oriented Programs. A CM Transactions on Software Engineering and Methodology , 250-295.

Erickson, Carl, Jorgensen, P.C. (1994, September). Object -Oriented Integration Testing Communications of the ACM ,
30-38.

Jaaksi, Ari (1998 January). A Method for Your First Object-Oriented Project. The Journal of Object-Oriented
Programming, 17-25.

Kung, David, Gao, Jerry, Hsia, Pei, Toyoshima, Yasufumi, Chen, Chris, Kim, Young Si & Song, Young-Kee (1995
October) Developing an Object-Oriented Software Testing and Maintenance Environment. Communications of the
ACM, 75-86.

Liao, S.Y, Cheung, L.S & Liu, W.Y. (1999 January). An Object-Oriented System for the Reuse of Software Design
Items. The Journal of Object-Oriented Programming , 22-28.

Lorenz, Mark (1993). Object-Oriented Software Development A Practical

Page 57

Guide . Englewood Cliffs, New Jersey, 78-110.

McGregor, John D, Korson, Timothy D (1994 September) Integrated Object-Oriented Testing and Development
Processes Communications of the ACM, 59-77.

McGregor, John D, Sykes, David A (1992) Object-Oriented Software Development: Engineering Software for Reuse :
Van Nostrand, Reinhold, New York, 193-219.

Murphy, Gail C, Towsend, Paul, Wong Pok Sze (1994 September) Experiences with Cluster and Class Testing
Communications of the ACM, 35-47.

Poston, Robert M (1994 September) Automated Testing from Object Models Communications of the ACM , 59-77.

Schmidt, Douglas C(1995 October) Using Design Patterns to Develop Reusable Object-Oriented Communication
Software, Communications of the ACM, 65-74.

Siegel, Shel (1996) Object Oriented Software Testing A Hierarchical Approach John Wiley & Sons Inc. New York,
117-310.

TE
AM
FL
Y

Team-Fly®

Page 58

Chapter IV—
Technical and Market Viability of Object Database Technology

Jozsef T. Komlodi
American University, USA

Despite its decade long history, object database technology has never entered mainstream system development. In this
work, I look at the background of the slow adoption, and the possible future outlook of this technology based on my
personal experience and the published literature. Object databases represent a revolutionary new technology and provide
superior storage facility for complex data structures and types. They also enable close language binding and a unified
development process. It is a mature technology with advanced database management and development features and has
several proven and robust deployment examples. Besides its current technical excellence, this technology is also
demonstrating future potential through such emerging technologies as Java, Application servers, and XML. The past
failure of object databases to proliferate the market was mainly due to unawareness, lack of skills, and the overwhelming
existing investment in relational systems. As these factors are changing by the end of this century and new technology
adoption is accelerating, object databases are looking forward to a slow but sure take off.

Page 59

Technical and Market Viability of Object Database Technology

It might be a somewhat surprising fact that object databases have been around for as long as a decade. Since their
appearance, market researchers and technology experts have been making confident projections that they would conquer
the landscape of software industry. Indeed, information technology has gone through an amazing series of changes, but
object database technology has yet to enter mainstream computing. Is this due to the overall weakness of this
architecture, or is it rather the result of slow adoption of new technology?

By the second half of the 1990s, more and more new software projects selected object oriented (OO) technology as the
basis for their development. This paradigm shift naturally drew increased deployment of OO analysis, design, and
language tools. Objects became the basic unit of processing posing new demands on data storage requirements. The
increased complexity of data structures and types also affected the architecture of modern databases. Aggressive changes
in the business environment, such as globalization and deregulation, are demanding greater flexibility and complexity of
supporting information systems. As a result, their underlying data pool also needs to reflect these architectural changes.

Once again, why has object database technology not entered mainstream enterprise development despite the favorable
technical environment? Do object oriented database management systems (OODBMS) offer a different and improved
technology and architecture, or are vendors only trying to take advantage of the increasing popularity of the OO
paradigm? Is this technology mature and scalable enough for prime time? Will future technologies leverage object
databases fostering their widespread application, or will they suffice with the relational model? These are the questions
that I will attempt to address in this chapter. This review is based on both personal experience in OO development and
the extensive body of OO literature.

Technical and Architectural Validity

The operational principles of today's OODBMSs were inherited from their early ancestors. Object databases were
developed to handle

Page 60

complex, interrelated data structures. They were first used in computer-aided design (CAD) applications where
relational databases could not provide the performance needed. Object databases provided persistent storage in a single
user environment with high performance. These early systems could store objects, classes, associations, and methods. In
the late 1980s, commercial vendors started developing independent OODBMS products. They added database
capabilities to support multi-user, distributed applications. In the second half of the 1990s, the increasing popularity of
OO languages has renewed the attention toward object databases. Next, I will look at the core technology of object
databases, especially those basic architectural features that validate and differentiate OODBMSs. These technical
improvements over relational technology will help to understand the very need for this technology in certain areas of
information technology (IT).

Complex Data Relationships

The efficient handling of complex data relationships is one of the greatest advantages of object databases over their
relational counterparts. This improvement was an important driving force in the adoption of OODBMSs for early users.
Information access patterns differ from application to application. Standard business programs select a small subset out
of a large amount of data for processing, just like a typical payroll system. Whereas, in other applications, such as in
engineering programs, a larger amount of data is being manipulated by constantly navigating from data element to data
element. For example, to inspect a motor we start from the motor object itself and navigate to its components using large
sets of highly interrelated data. As the relational model does not support the automated handling of data relationships,
data structures have to be dealt with explicitly. Relational database management systems (RDBMS) store relationships
as data and not as structure. The conversion has to be done manually and it takes time. RDBMSs manage data
relationships by foreign keys. At runtime, the system needs to scan two or more tables comparing foreign keys to
recover relationships between data elements. This join process is a crucial bottleneck in relational technology. More than
two or three joins in a retrieval execution may slow down processing unacceptably. On the other hand, object oriented
database (OODB) technology allows the implicit storage of data

Page 61

relationships. As objects have unique identity, pointer-like data structures can represent relationships among object
instances. Users simply declare data relationships and OODBs automatically generate and handle them. As the traversal
of data links is direct (e.g., following a link,) there is no need to execute time-consuming join operations or looking up
index tables. For highly complex data structures this method usually results in magnitudes faster information retrieval.

The classic example of storing a virtual car in a garage will simply and powerfully demonstrate the difference between
OODBMSs and RDBMSs. Solving the task in an object oriented fashion, there is an object for the car and an object for
the garage. It only takes one operation to accomplish the goal and park the car (in Java: garage.park(car).) Storing the
same car in a "relational" garage requires much more work. All information must be disassembled into tables. It means
the storing of each part of the car in its own table: wheels in one table, mirrors in another, etc. The next morning the car
has to be reassembled again joining the parts together. This continuous transformation requires a great amount of extra
program code and slows down processing. In object oriented systems the car and all its parts are objects. Since the
database understands their relationships, the entire structure can be handled as a single unit. Data elements and their
relationships can be stored and retrieved as they are; there is no need for dis- and reassembling. Because of this
revolutionary different data storage approach, OODBMSs are more suitable for handling complex, interrelated data.

Complex Data Types

Besides the capability to handle highly structured data, object databases also provide extensible support for complex
data types. If information nicely fits into simple data types such as names, id numbers, or account balances, than the
fixed number of built -in data types of relational databases will provide sufficient support. However, an increasing
number of applications process more complex data. These may have dynamically varying size, or contain nested or user-
defined arbitrary structure. A good example might be the data used in web applications such as images, text, audio, and
video. An important characteristic of OODBMSs is their extensible data type system. Developers can define additional
data types and an object database will handle them equally with its built -in types. Applications

Page 62

do not have to translate the data types of the programming languages into the built-in data types of the database systems.
They can store them in their native format easing and speeding up development.

Close Language Binding

In traditional relational systems there is a wall between the database and the application using it. The data is persistent
(permanent) in the database and is transient (temporary) in the application's memory space. The program communicates
with the database with read and write commands when the data is drawn from and written into the database. In object
databases this separation does not exist. Applications manipulate both persistent and transient data the same way. Any
kind of data can be persistent, and the same operations can be executed on persistent and transient data. Objects are
retrieved identically regardless of location. A nice strategy to implement object persistence is "persistence by
reachability." In this case, an object is persistent if it is reachable from another persistent object, and it will continue to
exist in the database even when the application is terminated (e.g., the Java binding in the Objectstore database from
Object Design.) The changes in persistent data are committed in transactions. While the OODB language interface offers
mechanisms to define and open databases, commit or abort transactions, acquire locks, and accessing data within a
database does not require any additional constructors. For example, if an object has not been retrieved from the database
yet, the program does not need to do any additional operations. The underlying database system will automatically
recognize the situation and retrieve the object.

According to Marry Loomis, object oriented programmers do not want to consider whether objects reside in the memory
or on the hard drive, they simply want to work with objects. They do not want to deal with the issue whether an object
has already been retrieved from the database. They want to use OO language structures and have the underlying system
deal with the problem of persistence, whether objects are on the disk, in the cache, or in the memory (Kalman, 1994). As
OODBMSs inherit the data model of OO programming languages and provide seamless integration, they can elegantly
meet such needs of OO programmers.

Page 63

Unified Development Process

Besides the benefits for programmers, close language binding also simplifies the lives of system analysts and designers.
OODBMSs evolved to support OO languages and to take advantage of object orientation in the database too. OODBs
follow the same concept like OO analysis, OO design, and OO languages allowing a unified conceptual approach during
the entire development process. This unified approach simplifies development and eases communication between users,
analysts, and programmers. In the case of relational databases objects have to be mapped to tables. It takes time to create
the relational tables and views, and it is also hard to keep up the model with changes in the physical implementation.
This results in applications that are difficult to maintain. Using OODBs, there is no need for semantic transformations as
the same object model is used during the entire lifecycle. Designers do not have to translate an object model to a
relational one. This unified approach provides higher quality systems that are easier to maintain.

Technical Maturity

Although object database technology may sound unfamiliar for several IT professionals, this is not a new technology. In
fact, most of the object database vendors have been around for a decade now. They have been continuously improving
and tuning their products. OODBMSs have already gone through four or five versions, and they are stable, robust and
able to perform in the most challenging situations. Even though it is a mature technology, it is still very often mistakenly
criticized for its immaturity and lack of advanced database management features. Thus, here I will highlight some of the
characteristics that raise OODBMSs to the level of industrial strength enterprise computing.

The best and only way to demonstrate the robustness of a technology is to present real-life applications where it has
already proven itself. This has to be the case for object databases too. Looking for the best example, I could easily find
hundreds of the cases of successful deployment in business-critical missions. I came across several OODBMSs handling
terrabytes of data for hundreds of concurrent users with very challenging performance requirements. In processing
environments where the information stored was very complex and

Page 64

structured, such as telecommunication, finance, or web applications, object database solutions often provided fifty to
eighty times better performance than relational database systems. In many cases the relational data model could not
provide sufficient performance at all. However, the example that I eventually decided on will effectively present both
scalability and reliability of object databases.

Next, I will take a brief look at the information system of the Chicago Stock Exchange (CHX.) It seems to be an
especially relevant case as CHX competes by executing trades faster and less expensively. In the stock market, all
transactions must be reliably maintained and processed. After careful consideration, CHX selected Versant's OODBMS
as the basis for its next generation system. The implementation was structured into a three tiered system. It features a
client tier, an application server tier, and an object server tier. The object server tier is based on two pairs of Versant
fault tolerant servers. Performance can be increased during operation by adding object server nodes and rebalancing.
Dynamic rebalancing is possible through the capability of the OODBMS to enable objects to be distributed regardless of
address or physical location. (Most of the technical characteristics mentioned above will be explained in more detail
later.)

CHX was impressed by the scalability of the Versant OODBMS: "Versant ODBMS scales well; we can very easily add
new servers to absorb growth. Versant also provides better performance because it caches objects on the client as well as
the server, where relational systems only cache data on the server" ("Chicago Stock", n.d.). According to John Kerin:
"Relational would have imposed too much overhead" (Baer, 1999). On the whole, the OODBMS of the Chicago Stock
Exchange has achieved its business and development goals. Further more, during the stock market's dramatic loss and
gain in October of 1997, the system showed excellent resistance. As Kerin says: "On Tuesday, October 28, 1997 when
the CHX moved $1.6 billion worth of stocks and experienced three times its normal systems load, the Versant ODBMS
performed superbly keeping up with the unprecedented volume.''

Besides the robustness and the maturity of the core technology, regarding advance development and second storage
management features object databases are also catching up with and even advancing relational technology. Next, I will
give a list of these improved features based on three leading products: Versant's object database,

Page 65

Jazmine from Computer Associates, and ObjectStore from Object Design. Advanced development tools include
graphical database designer, drag-and-drop interfaces, component wizard, support for Java, ActiveX, Hypertext Markup
Language (HTML), Visual Basic, and C++. System integration features include support for OLE DB, Open Database
Connectivity (ODBC), Common Object Request Broker Architecture (CORBA), Distributed Component Object Model
(DCOM), DB2, Oracle, Structured Query Language (SQL) classes, and web serving application programming interfaces
like Netscape's and Microsoft's standards. Second storage management features include transparent fail -over, online
incremental backup, two-phase commit, long transactions, asynchronous replication, versioning, on-line schema
evolution and disk space management.

Due to the limited length of this chapter, I will not explain these features in greater detail, but I believe that this
impressive list by itself may picture the current capabilities and comfort of object database technology.

Future Use

To anticipate the future potential of an underlying, supporting technology such as databases, one has to look at the
possible future trends in IT. The question is whether the general direction of technical evolution points toward the
increased use of the services of the technology examined. Next, I will look at those emerging technologies that are likely
to have wide acceptance in the near and more distant future and have the potential to leverage and foster object database
technology.

Java

Object oriented languages have been around for three decades. They have always promised a better organization and
management of programming code as opposed to structural languages. Despite this substantial advantage, languages
such as C++, or Smalltalk, have never managed to get into the mainstream of enterprise computing. However, in the
second half of the 1990s this situation started to change radically. This change was mainly due to the introduction of
Sun's OO language: Java. This language quickly became a web-related buzzword, and by the end of this decade it is also
gaining substantial support in real-life enterprise applications.

Page 66

Java is a modern programming language. It promises to offer services in most of the areas that are required in today's
application development projects. First of all, Java is an elegant object oriented language. It was designed learning from
the positive and negative features of already existing languages. Other advanced characteristics include: free availability,
platform independence, web awareness, wide industry support, enormous marketing and research assistance (from
vendors such as IBM, HP, Oracle, Netscape), and support for middleware technologies (COBRA, Enterprise Java Beans
(EJB), Extensible Markup Language (XML)). Utilizing its appealing architecture and ease of use, several new software
development projects are being implemented entirely in Java. As this language continues to mature, it will have a
tremendous opportunity to eventually become the C of the 21st century.

There will be a growing need for object databases as Java continues to grow in acceptance. As described earlier, the
problem of mapping Java objects to relational databases is a considerable one. Although it can be done, well-
documented studies have shown that the program code itself mapping objects into relational database structures might
consume 40-60% of development and maintenance resources. It is hard to envision companies continuing to do it,
especially as more and more of them become familiar with OO programming. Further more, the unified object oriented
approach that object databases provide will also be a main consideration for developers using OO programming and
design methods. Today, the majority of already existing data is stored in relational databases and is manipulated by
structural languages. However, as OO languages continue to gain acceptance this situation will gradually change.

Data and Workload Distribution

Distributed computing is one of the greatest promises in the near future of information technology. It is a revolutionary
new architecture, where the network itself behaves as the computer, and information and processing power is spread
across worldwide networks. OODBMSs were constructed in the early days of the distributed computing era; thus, they
are able to take advantage of the available parallel computing power. Relational databases provide only limited support
for workload and information distribution. All the processing happens on a central server including data buffering and
join and

Page 67

select operation execution. OODBMSs do not have the same problem. They were designed to take advantage of
distributed computer power and make use of multiple servers and clients to handle information storage and processing.
Rather than having one huge database spread across a disk farm, as it is the case with a RDBMS, an OODBMS can have
sections of the database (clusters of objects) distributed across many (hundreds or thousands in the Objectivity/DB
architecture) servers. In an OO system objects might be located on the client or on a local server or somewhere on the
network. They can be dynamically moved to the location where they are most needed, reducing retrieval time. This is
accomplished using object identity to locate and identify objects.

Besides the distribution of data, OODBMSs also allow the distribution of workload. Most of the currently available
object databases support the execution of object methods (e.g., Jazmine from Computer Associates.) Objects request the
services from each other and the thread of execution goes from object to object and from database to database. This is
the service of OODBMSs and transparent to programmers. Consequently, by moving objects from server to server or to
client caches, the associated workload can also be reallocated. Moreover, the client side of OODB applications can be
tuned for the nature of the task. In OODBMSs there is an in-memory database at each client, which frees developers
from having to implement data chases by hand. By moving collections and sets of objects into client caches the
execution of queries can also be done at the clients.

Object databases usually support COBRA and DCOM interfaces, thus they are able to provide object broker services.
Applications located anywhere on the network can request services from objects residing on OODBMSs. As distributed
computing gains more acceptance, the inherently more distributed nature of object database will become a significant
advantage.

Application Servers

For the last two years application servers have received a great amount of attention. Most of the software companies that
have products in the middle tier are either developing or planning to develop application servers. Application servers
already have a half-a-billion dollar market and, according to analysts (Ricciuti, 1998), in the coming four to five years
this will increase to $4 billion.

TE
AM
FL
Y

Team-Fly®

Page 68

Enterprises are beginning to use application servers to integrate Web applications and existing systems together for e-
commerce and other web-based applications. They simplify and speed up the task of linking new web systems and
legacy systems. An application server is somewhat like a Web server in that it services clients running browsers by
executing business logic (usually written in C++ or Java), and accessing back-end databases or other applications (such
as PeopleSoft, SAP.) They run in the middle tier and handle the application logic and connectivity that previously was
handled by fat clients. This is the logic that determines how a business system should behave.

Most of the application server products are written in modern OO programming languages such as C++ or Java. The
business logic running on application servers is also developed in these languages and usually takes advantage of
middleware technologies such as COBRA, EJB, and DCOM. As application servers heavily use objects and object-
related technologies, their support by OODBs seem to be a logical consequence. Several application servers use OODBs
for object caching and storing. Providing an object cache within a single application server can have significant
performance benefits, as objects do not need to be reloaded each time someone wants to perform an operation on them.
Caching across application servers can further increase performance by minimizing routing of requests to the optimal
server. It also improves availability of services by increasing redundancy of information (especially for read-only data),
resulting in increased performance and scalability.

The strategic relationship made in February 1999 between Object Design, Inc. (an object database company) and BEA
(an application server company), reflects well the support opportunities that OODBMSs can provide to application
servers. According to Scott Dietzen, the chief technology officer of BEA's WebXpress division, 'ObjectStores'
architectures are especially well -suited for our customers who are deploying Java applications across a cluster of BEA
WebLogic [application] servers. ObjectStores' ability to maintain a consistent, in-memory cache on every server results
in excellent performance, scalability, and reliability, which are critical considerations in deploying EJB components
(Walsh, 1999).

Page 69

XML

XML is a universal format for data interchange. It was developed by the World Wide Web Consortium (W3C)
organization and accepted as a standard in February 1998. Technically speaking, it is a meta -language that provides
rules for document definition. It can solve one of the biggest problems in enterprise computing: data integration. XML
gives the possibility of presenting data in such a meaningful manner that allows independent systems to understand and
process it. XML is easily portable, is described in ASCII, and can be transmitted using standard protocols like Hypertext
Transfer Protocol (HTTP). In an XML document, every data element comes with identifying meta information and the
nesting of elements can convey data structure. AS XML is self-describing, its processing does not require custom code.
Applications can be written generically to interpret XML documents.

According to the Gartner Group (Object Design, Inc., n.d.), a typical enterprise devotes 35 -40% of its programming
budget to developing programs that transfer data between different databases and applications. XML helps to ease this
problem by integrating data between data sources. The traditional method of data sharing is the generation of custom
code to facilitate interchange of information. This custom code grows quickly with the integration of additional system
elements. The alternative is to use XML as the universal interchange format.

XML will be the most important new technology for the Web since HTML. Its impact will be broad and widespread. It
is already beginning to be used to describe data in various vertical and horizontal industries. Banking and finance are
using it to present transaction and financial information. Education is using it to define course content for distance
learning and web based training. E-commerce is starting to use it to define catalog content, billing information, orders,
and other pieces of data involved in an online transaction. It will change how Web pages are constructed since it
describes content whereas HTML describes the page layout.

Early efforts addressing server side XML processing were mainly implemented by a simple isolated XML interface in
front of a relational database. However, this solution is not sufficient in most of the cases. Relational data structures do
not offer flexible enough storage facility due to the inherently hierarchical nature of XML data. If the full

Page 70

XML tree-like data structure needs to be stored, the object oriented model hands down a better storage format than the
relational, and OODBMSs will show significant speed advantages.

According to Tim Bray, coauthor of the XML specification, and based on his experience with XML's precursor Standard
Generalized Markup Language (SGML), structured documents are not easily stored in relational databases:

You can do it, but it requires a whole lot of ad-hockey and kludgeware. In the world of XML, sometimes this won't be a
problem, because a certain proportion of XML is going to be used to interchange metadata, purchase orders, and remote
procedure calls, which are naturally tabular and will work just fine. But there will be another proportion [of XML
documents] that does have document-style structures and causes such problems. How big are the relative proportions going
to be? Nobody knows (Walsh, 1999).

Steve Muensh, an XML evangelist at Oracle, thinks XML documents will be just transitory and only exist for the
transition time over the network: "This is data they already have in their enterprise relational databases and this is data
which customers have no intention of representing natively as a set of XML documents on the file systems" (Walsh,
1999).

On the other hand (as OODBMS vendors see it) to leverage the full benefits of XML in the middle tire, besides simple
information transmission, storage, caching, querying, and manipulation of native XML data are also required. This
greater integration provides a unified view of XML data, and its hierarchical nature is preserved. As a result, no slower
operation is involved (like joins) at retrieval time to reconstruct data. Furthermore, even if XML is only going to be a
transient format, native caches still make sense for commonly accessed XML documents or pieces of XML trees.

XML technology has huge potentials and the relational data model is not the best way of storing XML documents.
However, I would not underestimate the marketing power of relational database vendors. They may put substantial
resources into advertisement insisting that all is needed is a faster machine and it will work.

Page 71

World Wide Web

The wide variety of data types used in web pages, the complex management of hyperlinks, and the overall organization
of web site structures limit the scalability of solutions relying on file structures or relational databases. Objects compose
the majority of information presented on the Web. Image files, audio files, hyperlinks, text, pieces of Java code and
other information that comprise a Web page are all rich data type objects. Although an object -relational database may
provide a sufficient solution for storing rich data, most of the web systems also incorporate a significant amount of
highly structured information. Web applications not only store information of different types, but this information is also
highly interrelated and linked together. The next piece of information a user wants is frequently related to the last piece
they "touched". Object databases are a natural match for storing this kind of information. The reason why OODBMSs
did well in telecommunication network management applications and in financial trading desks is that both of these
application areas have information that is highly interrelated, navigated from piece to piece and time critical. The
excellence of OODBMSs in these areas ensures a superior architecture over relational databases for web applications.

I looked at XML as one of the technologies that may foster the wide spread of OODBMSs. However, as this technology
may play an extremely important role for the Internet, it deserves a second look. One of the most interesting and
powerful potentials of XML is its ability to define the contents of web pages and web interfaces. XML will change the
web and allow more autonomous services to be created. In the next two years, more and more sites will use XML to
define the content of sites so that automated search tools can more easily search it. This will make applications like e-
commerce more feasible and will essentially create electronic marketplaces where programs do the searching, bartering
and procuring on the behalf of web users. Though we are only in the early days of this e-commerce market, it is already
apparent that XML will be the biggest thing to affect the Internet and web development since HTML. As I described it
earlier, for the manipulation and storage of XML formatted data, OODBMSs give a better solution than relational
technology.

The majority of Web content is stored in native file systems. These

Page 72

file systems have never been optimized for concurrency or performance in a multi -user environment. For example, a
request for a document on a large web site may require as many as 5000 disk sector reads before the system gets to the
location of the appropriate file. These I/O operations consume the most time in the entire computing environment. The
usual solution to these problems is to install more hardware. An alternative software solution, on the other hand, can
provide an in-memory cache for the fast location and retrieval of information objects. Using object oriented databases,
their hash tables can offer a cache to maintain directory listings. These systems have been optimized for managing of
vast amount of complex type data with high performance in large distributed systems. Empirical tests (Versant, n.d.)
showed that a minimum of a 30-time throughput increase can be achieved using OODBMSs.

The importance of web technologies in the future is not a question any more. The question is how much object database
technology will be able to leverage the mass deployment of the Internet. Even though Web information handling it
provides better solutions than the relational model, as I pointed out earlier, superior technology does not always assure a
winning position.

Costs and Limitations

It is not too difficult to realize the great potentials that OODBMSs have in general, and especially in certain areas of
information technology. However, one might ask the question: So why has OO database technology not become a
mainstream storage facility yet?

The biggest problem is unawareness. Most application developers and project managers have either never heard of, or
ever considered using object databases instead of traditional relational products. Besides this, the slow adoption of new
technology in general and the exotic nature of this solution has been a major slowing factor. Despite its long history,
object technology is still not a widely used paradigm. Developers do not know how to program or think in an object
oriented manner. Due to the lack of programming, analysis, design, and database administrator skills, OO database
technology also raises a considerable educational challenge for enterprises. It requires a substantial commitment to
training and to the proper use of the OO concept.

Page 73

The overwhelming installation base of RDBMSs and the huge amount of legacy data stored in them is another major
discouraging factor. Even when OO languages are used, they manipulate legacy data. Enterprises stay with relational
technology to "leverage" the existing investments (software, hardware, training, expertise) they have in their relational
databases.

The strategy that relational vendors use to target the object technology market is also a slowing factor of the adoption of
object databases. Relational vendors developed a hybrid technology to support OO features by relational databases.
Although object-relational (OR) databases can present some object oriented behavior, they do not provide a satisfactory
solution in most of the cases. In OR architectures OO data structures are decomposed into constituent parts and stored
either in columns in tables or in linked external binary files. This solution has several disadvantages. First of all, where
join operations are involved during retrieval performance suffers eliminating the manipulation of complex interrelated
data. Besides this major problem, the support for close language binding, client-side caching and object distribution may
cause considerable technical challenges. Although I mentioned only some of the possible drawbacks of OR technology,
even this limited list clearly shows that a pure object database approach better facilitates most of the current and future
storage requirements. Even though it is not the best solution, as vendors make OO features more sophisticated, hardware
gets more powerful, and OR companies put an increased amount of effort into marketing, this technology will very
likely continue to be the biggest competition for object database products.

These factors mentioned above are largely business or human not technology reasons for the slow adoption of
OODBMSs. However, looking at the history of information technology in the 1990s, one has to admit that superior
technology does not always assure a winning market situation.

Future Directions

The appearance of object databases was triggered by a technical need that relational technology could not fulfill. CAD
applications required storage facilities that could effectively and efficiently handle complex, interrelated data structures.
Due to its very nature, relational

Page 74

technology was not and is still not a good solution for this purpose. At the beginning of its history, object database
technology provided services in a very limited area of computing. However, as object technology became more popular
and the World Wide Web moved into the focus of information technology, the relevance of object databases became
obvious in much broader means. Object databases fit very well with OO languages as they provide close language
binding and a semantically unified model throughout the entire development lifecycle. OODBMSs also provide more
efficient storage and manipulation of complex data structures and types. This ability has gained significance by the
increase of the complexity of computerized industry processes and by the growing importance of web integration. As a
result of the anticipated potentials of object database technology, in the late 1980s and early 1990s this industry raised
vast market expectations. Market watchers expected OODBMS vendors to grow by a 60-100 percentage yearly as their
technology matures. There were still important features missing form leading products such as scalability, improved
database management capabilities, integrated development environment etc. As improvements would be made in these
areas analysts expected vendors to radically gain market share.

This has not happened. Even though object database technology has more than a decade of history by now, it never
entered mainstream enterprise development. OODBMS products can demonstrate proven technology with applications
in all areas of industry such as banking, healthcare, manufacturing, telecommunication, and software. They provide
magnitudes better performance and scalability than their relational counterparts, widely used standards, query
capabilities, rapid and flexible development environments, and advanced second storage management features. In short,
object databases provide a competitive alternative for relational technology. However, due to human and business
factors, this technology is by far not the typical choice. The revolutionary new way of thinking, small vulnerable
vendors, and the huge investment in relational technology are all discouraging factors. Until present times, object
database technology has had a slow and difficult growth. As we enter the 21st century the question is whether this
growth will slow down even more or will get accelerated by new technology trends.

Several trends emerged in information technology in the last two

Page 75

years that may provide additional momentum for object databases. New software projects are more and more likely to
use OO programming languages such as Java and C++. The complex data types of web and e-commerce applications,
and the highly hierarchical structure of XML documents ask for a different kind of storage facility. Object oriented
application servers and distributed object systems may also increasingly benefit from the services of OODBMSs.
Besides new technologies, awareness is also gradually increasing as a new generation of skilled information technology
workers is entering the workforce. Even tough the technology environment never looked more promising, now the future
projections are much more moderate. Market watchers learned that this is a complex technology that is hard to
understand and promote. Its adoption is slower than more obvious technologies due to nontechnical factors. Several
object database vendors admitted that currently OODBMSs only have a highly technical niche market. To help this
situation vendors will have to change their marketing attitude and open up new markets for their products. According to
IDC's Olofson: ''The challenge for ODBMS vendors is to change their ways of doing business away from highly
technical end-users and toward ISVs and system integrators. They may have to develop more of [a] consulting business
or align themselves with others who already offer extensive services." (Mendel, 1999)

Looking at the last 8 years of historical market data of OO database vendors an average of 30% growth rate can be seen.
This increase has reached the expansion rate in other fields of computing. Future projections from market research firms
show a 40% growth for the next five-year term. Even though this is not an exceptionally high expectation, OODBMS
vendors will have to work very hard to fulfill it.

References

Baer, T. (1999, Jan 18). Object Databases. Computerworld , 33,
66.

Kalman, D.M. (1994, December). Object Database Essentials: HP's Dr. Mary Loomis Explains the Fundamentals of
Object Database Technology [48 paragraphs]. DBMS ONLINE [On-line serial]. Available WWW: Hostname:
www.dbmsmag.com File: int9412.html.

Mendel, B. (1999, March). XML Buoys Databases for Corporate Markets. Infoworld , 21(13), 38-39.

Page 76

Object Designs, Inc. (n.d.). Server-Side XML: Taming the Tower of Babel. Object Design, Inc. Available WWW:
Hostname: www.odi.com Directory: ODILIVE/FRAMEWORK File: main.asp?sKey=HOME.

Ricciuti, M. (1998, August). Application Server Eludes Definition [34 paragraphs]. CNET [On -line serial], Available
WWW: Hostname: News.com Directory:News/Item File: 0,4,25616,00.html?st.ne.ni.rel.

Versant Corporation. (n.d.). Chicago Stock Exchange. Versant Corporation. Available: WWW: Host:
www.versant.com:82 Directory: us/finance File: ficustomer1A.html.

Versant Corporation. (n.d.). Software Solutions to Internet Performance Problems. Versant Corporation. Available
WWW: Hostname: www.versant.com Directory: cgi-bin/vwscgi/whitepaperapp File: NEWTASK?REQNUM=
2&RESOURCENAME=INTERNET_PERF.

Walsh, J. (1999, January). XML Poses Data -architecture Debate [27 paragraphs]. Info World Electric [On -line serial],
Available WWW: Hostname: www.inforworld.com Directory: cgi-bin File: displayStory.pl?/features/990125xml.html.

Page 77

Chapter V—
Software Reuse and Object Technology

Jane Fedorowicz
Bentley College, USA

Denis Lee
Suffolk University, USA

Introduction

Companies are increasingly requiring that new information systems development projects employ object oriented (OO)
analysis, design and programming approaches. The hottest new Web tools and languages have object capabilities built
into them. Much of the movement toward the OO paradigm for systems development is based on claims of pioneers and
vendors that adoption will lead to better and faster designs, more maintainable systems, and most audibly, reusable
software. A typical set of attributions appears in CACM: "OO technology promotes a better understanding of
requirements and results in more modifiable and maintainable applications, providing other benefits such as reusability,
extensibility, robustness, reliability, and scalability. OO technology promotes better teamwork, good communication
among team members, and a way to engineer reliable software systems and applications" (Fayad and Tsai, 1995).

However, to paraphrase Brown and Wallman (1998), object technology is neither necessary nor sufficient for reuse, or
what they call component based software engineering. Reuse may be theoretically easier in an OO environment, but it is
frequently cited in non-OO

TE
AM
FL
Y

Team-Fly®

Page 78

projects as well. Notably, 80% of the 120 large companies responding to a survey by the Cutter Information Group cited
reuse as a driving reason for adopting object technologies (Radding, 1998).

Definitions of reuse vary depending on the nature of the reused component. This study adopts the following definition:
"Software reuse is the process of building or assembling software systems from predefined software components that are
designed for reuse." (McClure, 1997, p. 3). Under this definition, reusable components may be objects or program
source code, reflecting a commonly held view of reuse. However, reuse programs may also incorporate software
specifications, project plans, frameworks, or other software project deliverables. While focusing on the synergies
expected from the reuse of objects, this study also examines other aspects of OO and reuse as they influence today's
software practices.

Background

Several theoretical reuse frameworks have been proposed in the literature, including the very comprehensive effort in
Kim and Stohr (1998). However, reuse has only recently begun to be investigated and defined in a field research setting.
Several case studies have been published illustrating the benefits and costs of reuse programs and approaches. In one
study, significant development time and monetary savings were chronicled at Schwab for their e-trade system, which
also resulted in improved user response time, a key competitive advantage within their industry. Schwab's success was
predicated on adopting a single object language, Java (Levin, 1998).

Reuse proponents frequently point to the Software Engineering Lab at NASA as a leading success story for reuse. Reuse
rates from 75% to 96% are reported for their projects, with the caveat that cost to develop code for reuse is higher than
the cost to develop code without reuse as a stated goal. However, total development costs and error rates have dropped
dramatically with reuse (Basili and Caldiera, 1995). Other studies at companies like Travelers' PC Claims unit, IBM,
MBA Technologies, and 20th Century Fox have shown similar patterns of benefits (Fichman and Kemerer, 1998;
Radding, 1998; Ross et al., 1996; Rothenberger and Hershauer, 1999).

Many of these case studies are primarily illustrative in nature. However, a couple of them augment the case history with
an analysis of the activities noted at the site. Rothenberger and Hershauer tested

Page 79

a software reuse measure based on lines of code in three kinds of component software at one site. They computed an
overall reuse rate of 67.4%, surface structure 0.4%, 57.0% reuse in the middle structure, and 95.9% reuse of the deep
structure.

In the most comprehensive field study of all, Fichman and Kemerer examined 15 projects at eight IBM sites. To their
surprise, they found IBM's current reuse practice to be informal and ad hoc, rarely extending beyond project team
confines. They also found that many organization-centric reuse activities (such as formal reuse programs and centralized
libraries) had been disbanded due to low participation and overall staffing reductions. They propose a reuse model
comprising four dimensions; wherein, a suitable combination of organizational model, production model, incentives and
control, and funding and cost management need to be synchronized to support a successful and systematic reuse
strategy.

In a predecessor project to the current study (Fedorowicz and Villeneuve, 1999), we analyzed surveys from over 200 OO
practitioners to ascertain their level of experience with OO tools and techniques, and also to assess their perceptions of
the usefulness and benefits of OO. Many vendors' claims were upheld by professionals using the tools, yet not always to
the extent that the vendors anticipated. In particular, OO techniques were perceived as hard to learn, and do not give a
novice an anticipated edge in acquiring expertise. Overall, however, respondents preferred to use OO for application
development, as well as to support team-based activities, such as client communications, project team communications,
and new team member familiarization. Professional users expected that OO would require a greater time investment at
the beginning of SDLC, with time savings accruing at the latter stages of a project's implementation and use.

The most favorable preferences and benefits were reported by those respondents who have used OO the most. Those
with OO experience, who have worked on the largest projects, and who have employed OO in the most SDLC steps had
the most positive responses to the survey. Those who adopted formal methodologies and development environments also
expressed more favorable opinions than those who work without them. Thus, in its users' eyes, OO appears to exceed
expectations once the professional has invested considerable

Page 80

time in learning the techniques and applying the tools needed to develop systems effectively within the OO paradigm.

These results enumerate the many perceived benefits of OO within individual development projects. However, there are
many potential cross-project, or organization-wide advantages of adopting OO technologies that may prove to be even
more significant to a company. The current study will build upon the project orientation of this study, while expanding
the focus to encompass organization-wide implications of object technology.

Of particular relevance in the prior study, respondents reported expectations that objects they have worked with are or
will be shareable and reusable. This opinion was stronger when OO was used in a greater number of Systems
Development Life Cycle steps, when project size was larger, and when the respondent had greater OO experience. In
other words, the more OO was used, the greater the expectation for resulting reuse practices. These findings bear out
many of the relationships proposed by the Kim and Stohr software reuse framework and illustrated by the case studies
described earlier. Their significance motivates the need for a more in -depth survey to explicate more precisely the
characteristics of reuse in practice, at both the project and organizational level. The current study, outlined in the next
section, includes descriptive analyses of the adoption and diffusion of OO and reuse technologies and identifies some of
their project and organizational benefits.

The Study

Practitioners with extensive systems development experience were surveyed to measure more precisely their experience
with OO tools and techniques and to relate the benefits (and costs) that accrue due to OO adoption. In addition, the
survey focuses on reuse, the most highly hailed of all OO benefits. A major goal of this study is to identify what is being
reused, by whom, whether reused objects are developed in-house or purchased from an outside clearinghouse, and under
what circumstances they can be reused. The study will also identify the added costs of producing reusable code (vs.
traditional, application specific code), where in the Systems Development Life Cycle extra time or effort is required to
successfully produce a reusable end product, and under what circumstances reusable objects are actually reused.

Page 81

A three page questionnaire was developed based in part on the earlier OO survey, several widely used MIS surveys on
usefulness and user satisfaction (e.g., Delone and McLean, 1992), and from practitioner writings on reuse (e.g.,
McClure, 1997). It was pretested in an object oriented design course taken by advanced M.S. in Computer Information
Systems students. The final, slightly modified questionnaire was distributed in July, 1997 to about 1,000 systems
developers. The majority of the mailing list was obtained from PC Week , and comprised experienced systems
developers. A smaller number of respondents were from a mailing list of reuse specialists who had been participants in
reuse conferences and trade associations. A total of 190 usable surveys were returned. This paper contains a descriptive
analysis of the data.

Preliminary Results

Tables 1 and 2 give demographic data for the respondents and their companies. Respondents have considerable OO and
reuse experience. They are seasoned IS practitioners. They are employed by a range of companies, spanning many
industries as well as small and large organizations. Twelve percent report the existence of a formal Reuse Program at
their company, 5 percent used to have one, but it has been disbanded (as was the situation at IBM as noted by Fichman
and Kemerer), and another 4 percent describe various other approaches to a formal program.

Respondents were asked to estimate the extent of OO and reuse adoption within their organizations. Table 3 summarizes
these responses. While 16 percent reported no OO efforts within the past year, 20 percent perceived that most or all of
their company's application

Table 1: Respondent Demographics

Respondent Demographics Mean Value

OO experience 3 years

Reuse experience 3.6 years

Years in computer industry 15 years

Years in current position 5

Percent male 91%

Age 40

Page 82

Table 2: Company Size and Experience with Reuse Programs

Company Data Percent

Number of employees

<100 24%

100-999 20%

1000-9,999 29%

>10,000 28%

Percent with Reuse Program 12%

Percent without Reuse Program 80%

Percent that used to have a program but don't need it anymore. 2%

Percent that used to have a program but it didn't work and was disbanded. 3%

Other Reuse Program response 4%

Table 3: Companies' Exposure to Objects and Reuse

Organizational effort in
the past year (choose one
only)

Number of companies
reporting that this
percent of applications
developed were OO

Number of companies
reporting that this
percent of applications
developed contained
reusable components

Number of companies
reporting that this
percent of components
were developed expressly
for reuse

None 30 (16%) 16 (8%) 40 (21%)

<25% 72 (38%) 65 (36%) 81 (43%)

25-50% 34 (19%) 37 (19%) 21 (11%)

50-75% 10 (5%) 21 (11%) 16 (8%)

75-99% 15 (8%) 13 (7%) 5 (3%)

All 13 (7%) 17 (9%) 2 (1%)

Don't know 16 (8%) 21 (11%) 24 (13%)

development efforts were object oriented. Only 8 percent perceived that their company did not reuse components in the
past year, while 27 percent reported that over half or all applications contained reused components. However, efforts to
design components expressly for reuse were not as prevalent. Twenty-one percent reported no components were
developed for reuse, although this does not preclude components from being purchased from a component vendor or
other source (as indicated in Table 4). Twelve percent reported that half to

Page 83

Table 4: Sources of Reusable components

Source Percent Correlation with % of
applications containing
reusable components

Correlation with % of
components developed for
reuse

Percent of reusable components
developed in-house using special
tools and environments

12% .01 .18**

Percent of reusable components
developed in-house using
programming languages

49% .24*** .17**

Percent of reusable components
purchased individually

9% .17** -.04

Percent obtained as shareware or in
the purchase price of a development
environment

12% -.16 -.04

Percent of components purchased in
an object "library" or "package"

11% -.05 -.04

Percent obtained as shareware 1% -.07 -.01

Other sources (contracted, etc.) 4% .01 .05

all of their in-house development of components were intended to be reused.

Source of components was correlated with percent of components developed for reuse in Table 4. The results support
the contention that in those companies where components are specifically designed for reuse, a higher percentage of
reusable components are produced inhouse, while those purchasing components do not necessarily design their software
for reuse. Specifically, those companies reporting the highest percentages of components being developed for reuse (in
Table 3) were more likely to indicate in-house development of components using programming languages (p=0.05) or
specialized tools and environments (p=0.05). Correlations with percentage of applications containing reusable
components show that for most of these applications, developers build their own components (p=0.01) or purchase them
individually (p=0.05). This suggests that reused components tend to be application-specific rather than generic building
blocks or of unknown reliability.

OO and reuse activities are more likely to involve development of new applications than existing ones. As seen in Table
5, each of the

Page 84

Table 5: Adoption of technologies for New vs. Existing Applications

 Percent of new applications
employing this technology

Percent of existing applications
employing this technology

Reuse 51% 19%

Objects 51% 11%

Table 6: Top Five Categories of Reused Items at Respondents' Organizations

Reused Items Percentage of Respondents

Code 62%

Data Objects 57%

Programming objects 55%

Subroutines 54%

Software Design 37%

technology practices was employed in just over half of new applications with equal frequency. However, modifications
to existing applications involved reuse only 19% of the time, and objects only 11% of the time, confirming that newer
projects are more likely to take advantage of these practices than those that are being retrofit.

The top five categories of reused items are indicated in Table 6. Overall, only four categories of reusable components
were reported by more than half the respondents, including code (62%), data objects (57%), programming objects (55%)
and subroutines (54%). It is clear that code segments of various kinds are perceived to be the most highly reused
components, far exceeding development methodologies, tools and frameworks in organizational reuse programs.

Respondents perceived many benefits extant from their company's reuse activities. Table 7 summarizes their perceptions
of the reasons reuse is practiced in their organizations, which represents their response on a 5-point scale with 1
representing "agree" and 5 "disagree". In addition, correlation analysis of this set of reasons with the length of personal
and organizational reuse experience is included in the table. Where results are significant, the correlations demonstrate
that more organizational experience with reuse increases the respondents' level of agreement with many of the reasons
companies practice reuse. However, individual respondents with higher personal levels of experience are not more likely
to have higher expectations of benefits than their less experienced counterparts. This argues in

Page 85

Table 7: Respondents Perceptions of Their Companies' Reuse Benefits

Reason for Practicing Reuse Mean
Response

Correlation with
respondent's
reuse experience

Correlation with %
of applications
containing reusable
components

Correlation with %
of components
developed for reuse

Increase software productivity 1.70 -.07 -.25*** -.24***

Shorten software development time 1.68 -.08 -.23*** -.16**

Improve software interoperability 2.08 .03 -.18** -.18**

Develop software with fewer people 2.40 -.05 -.04 .02

Move personnel more easily from
project to project

2.77 -.01 -.05 -.04

Reduce software development costs 2.01 -.12 -.18** -.07

Reduce software maintenance costs 1.87 -.04 -.12 -.19**

Produce more standardized software 1.94 .03 .08 -.08

Produce better quality software 1.79 -01 -.17** -.28***

Provide a powerful competitive
advantage

2.14 -.02 -.17** -.22***

support of the contention that many of the benefits of reuse are recognized to accrue to organizations rather than to
individual projects or tasks.

Respondents from organizations with higher levels of reuse practice were more likely to attest to project-level benefits,
including increased software productivity, shorter development time and better quality software. Experience also
correlates with higher expectations for organizational-level benefits of improved software interoperability and providing
a competitive advantage. Either the benefits play out in practice, or the level of buy-in of reuse-oriented organizations
positively biases their employees' perceptions of the value of reuse.

Interestingly, software development cost reduction is signifi-

Page 86

cantly correlated with a higher percentage of applications employing reusable components, but not when more
components are specifically developed for reuse. Also, lower software maintenance costs are expected when higher
percentages of components are designed to be reused. Adopting existing components is seen as shortening development
time, and spending the extra effort to produce reusable components is seen as paying off later on when the system is to
be maintained.

Conclusions and Future Trends

Like the Fedorowicz and Villeneuve study of OO benefits, more reuse experience was associated with significantly
higher perceived reuse benefits overall; however, it is organizational rather than personal experience that leads to higher
benefit expectations. This study shows that the benefits of reuse play out at both the individual project level and the
organizational level and suggests that efforts to promote reuse and to share components among projects are worthy of
carefully planned organization-wide investment. Like OO, increased experience with reuse raises perceptions of
decreasing maintenance costs, but only when a significant conscious effort is made to develop reusable components.

Although the benefits of reuse were readily discernible in the results, the adoption and diffusion rate of reusable
components were not as high as expected, nor were the findings on experience-related benefits. For example, while
producing standardized software is a benefit rated highly by many respondents, the results show that those with
extensive reuse experience do not report higher standardization expectations than those with less experience. One
explanation may be the frequent shift of development tools relied on by software developers. In the past few years, the
programming language of choice in the OO world shifted from specialized OO languages like Smalltalk to generic, but
not entirely object-based C++, and now to the ''purer", more shareable Java. These frequent changes make it difficult to
standardize on a single development languages, and may produce situations in which components that should have
common elements were developed with different tools over time. As companies (like Schwa b) recognize the reuse
benefits of a common software platform, we may see a rise in reusable component development efforts, as well as in
increase in overall diffusion rates.

Page 87

The majority of reused components were developed in-house, most frequently using programming languages. A smaller
number were purchased from external sources, perhaps because of a lack of fit or a lack of confidence in the quality of
externally developed components.

As more and more organizations garner experience with both OO technologies and reuse, the benefits achieved by
experienced developers joined with a significant pool of readily available, reusable components should lead to
increasingly cheaper and shorter development cycles. Success is more likely to occur in companies where project teams
and project managers are rewarded or recognized for their reuse activities.

In addition, as the software industry continues to provide OO-based development tools that operate seamlessly over the
Web, we should see an increasing supply of certified high-quality reusable components for sale from independent
developers. Adopters or purchasers of these components will need to rely on third party certification processes to assure
the reliability and usability of the purchased components. Without some outside assurance, this market opportunity
remains limited. The OMG, with its CORBA standard, is a good start toward attesting to the shareability of object-based
components. Other assurance standards will be needed to convince reticent developers of the quality of other functions
offered by external component sources.

Future Research

The analysis in this paper gives a brief introduction to our understanding of the adoption and diffusion of OO and reuse
in practice. Further analysis of the data collected in this study should help researchers and practitioners better understand
how and when to rely on object-oriented and reuse techniques by establishing patterns of adoption, use and benefit
achievement. The study examines the issue of object reuse at both the individual project and organizational levels which
will enable the establishment of guidelines on best practices for systems development and maintenance, as well as
projecting future trends in the marketing and sharing of objects and other reusable components.

Clearinghouses for code, whether internal libraries or independent vendors, are just now appearing in the marketplace.
Additional

TE
AM
FL
Y

Team-Fly®

Page 88

research and analysis will lead to prescriptions for critical success factors for providing such services and suggest
cultural changes that must accompany technical change in practice in order to truly achieve widespread reuse.

References

Basili, V. R. and Caldiera, G. (1995). "Improve Software Quality by Reusing Knowledge and Experience", Sloan
Management Review, 37(1), 55 -64.

Brown, A. W. and Wallnau, K.C. (1998). "The Current State of CBSE", IEEE Software , September-October, 37-46.

Delone, W. H. and McLean, E.R. (1992). "Information Systems Success: The Quest for the Dependent Variable",
Information Systems Research, March, 60 -95.

Fayad, M.E. and Tsai, W.-T. (1995). Introduction to section on object-oriented experiences, Communications of the
ACM, 38 (10), 50 -53.

Fedorowicz, J. and Villeneuve, A.O. (1999). "Surveying Object Technology Usage and Benefits: A Test of
Conventional Wisdom", Information and Management, 35(6), 345-356.

Fichman, R.G. and Kemerer, C.F. (1998). "A Project Team-centric Approach to Systematic Software Reuse", University
of Pittsburgh Katz Graduate School of Business Working Paper No. 757, June.

Kim, Yongbeom and Stohr, E.A. (1998). "Software Reuse: Survey and Research Directions", Journal of Management
Information Systems, 14(48, 113 -147.

Levin, R. (1997). "Java Boosts Reuse", InformationWeek , 701, September 21, p. 82.

McClure, Carma (1997). Software Reuse Techniques: Adding Reuse to the System Development Process , Prentice-Hall,
New Jersey.

Radding, A. (1998). "Hidden Costs of Code Reuse", InformationWeek , 708, November 9.

Ross, J. W., Cynthia Mathis Beath and Dale L. Goodhue (1996). "Develop Long-term Competitiveness through IT
Assets", Sloan Management Review, 38(1), .31-42.

Rothenberger, M.A. and J.C. Hershauer (1999). "A Software Reuse Measure: Monitoring an Enterprise-level Model
Driven Development Process", Information and Management, 35(5), 283-293.

Page 89

Chapter VI—
Reuse in Object Oriented Modeling:
An Empirical Study of Experienced and Novice Analysts

Gretchen Irwin
University of Auckland, NZ

Chamini Wasalathantry
Ernst & Young, NZ

Introduction

Object Oriented (OO) technology and software reuse are widely believed to be key ingredients to improving systems
development productivity and quality (Meyer 1989; Cox 1990). Software reuse is broadly defined as the application of
existing systems development artifacts to new development projects. OO technology supports reuse in a number of
ways. For example, at the programming level, reuse is supported through built-in components (classes) and
specialization of the class hierarchy. At the analysis and design levels, OO pattern handbooks provide reusable solution
templates to known modeling and design problems (Gamma et al. 1995; Fowler 1996). The systematic use of these and
other artifacts can, at least in theory, reduce the time taken to develop new systems by leveraging the knowledge gained
from prior projects.

While the claims of the benefits of software reuse and OO technology have been widespread, the empirical evidence has
been inconsistent and somewhat lacking. Many case studies report substantial productivity gains and quality
improvements from code reuse (e.g.,

Page 90

Banker and Kauffman 1991; Lim 1994). Other studies, however, show that OO programmers primarily engage in low
levels of reuse such as code scavenging (Lange and Moher 1989; Rosson and Carroll 1996; Fichman and Kemerer
1997), or that reuse is a cognitively demanding and often error-prone activity (Maiden and Sutcliffe 1992; Kim and
Lerch 1997). Furthermore, many researchers and practitioners argue that the reuse of upstream artifacts such as analysis
and design models can have a significantly higher payoff than the reuse of downstream artifacts such as programming
components (Boehm and Papaccio 1988; Biggerstaff and Richter 1989). However, there is very little empirical research
on the reuse of upstream software artifacts (an exception is Maiden and Sutcliffe 1992).

This chapter begins to address the lack of empirical research on the reuse of OO analysis and design artifacts. We
investigated the cognitive costs and benefits of reusing a given (source) OO analysis model for a new (target) modeling
task. The cognitive costs include the time and effort the analyst invests in understanding the source task, identifying the
similarities between the source and target, and adapting the source solution to the target solution (Biggerstaff and
Richter 1989; Curtis 1989). The cognitive benefits, presumably, include reduced time and effort to construct the target
solution.

Our primary research question is to explore the effect of reuse on the OO modeling process. Given the abundance of
research on expert-novice differences in modeling, design, and programming (e.g., see Detienne 1997), we are also
interested in whether reuse has a different effect for novice versus experienced OO analysts. We conducted a verbal
protocol study where novice and experienced OO analysts were asked to solve the same target problem. Some analysts
were given a source problem and OO solution to reuse (the reuse condition); others were not (the control condition).

As expected, we found that novices in the reuse condition spent additional effort on problem understanding due to the
reusable artifact. However, the effort spent on understanding the source example and mapping between it and the target
problem did not "pay off" in terms of reduced effort in constructing the target solution. In addition, novices in the reuse
condition evaluated their solutions less thoroughly than did the control subjects. Experienced OO analysts in the reuse
condition spent less effort on problem understanding than did their counterpart in the control group. The source example
seemed

Page 91

to facilitate the experienced analysts' problem understanding rather than adding an extra burden to it. However, as with
the novices, there was no noticeable reduction in the effort spent on constructing the solution between reuse and control
subjects. These findings, along with the results of other empirical studies, suggest that the cognitive benefits to software
reuse are still poorly understood. We suggest several avenues for future research on the cognitive aspects of reuse,
particularly the reuse of OO analysis and design artifacts. We need to learn more about how and where the reuse of
upstream artifacts can be effective. A better understanding of these issues will foster the design of tools that effectively
support novice and experienced developers in their reuse efforts.

The rest of the chapter is organized as follows. The following section sets the context for the study by reviewing
empirical studies of OO modeling and software reuse. The third section describes the study we conducted and the fourth
section presents the results. The chapter concludes with a discussion of the limitations of the study and the implications
for researchers, educators, and practitioners.

Background

Such is the software engineer's plight: time and time again composing a new variation that elaborates on the same basic
theme: 'Neither ever quite the same, nor ever quite another.' (Meyer, 1989, p. 3)

Experienced software engineers do not solve every problem "from scratch." They find successful solutions to known
problems and use the solutions again and again, adapting them as necessary to new contexts (Curtis 1989). The goal of
software reuse is to extend and formalize the "natural" form of reuse practiced intuitively by experts. The vision of
software reuse is that software engineers will systematically retrieve and apply robust, quality software development
artifacts throughout the development life cycle, and that this practice will lead to order-of-magnitude improvements in
development productivity and quality (Biggerstaff and Richter 1989).

The benefits of software reuse can be achieved with or without OO technology. However, there are many aspects to
object orientation that make it particularly conducive to reuse. At the programming level, object orientation promotes the
creation of encapsulated objects

Page 92

with well-defined interfaces. Programmers can reuse these objects in a "black-box" manner without having to
understand the details of how things work within the object. OO programming environments also promote reuse through
inheritance. Inheritance is the mechanism that allows a new class to share the definition of an existing class and to
extend that definition by adding specialized characteristics and behaviors.

While the reuse of programming artifacts can be beneficial, many researchers and practitioners believe that more
significant gains are possible from the reuse of analysis and design artifacts (Biggerstaff and Richter 1989). This belief
stems from the time-intensive nature of analysis and design and the high cost of correcting errors made during these
upstream development activities (Boehm and Papaccio 1988). OO analysis and design reuse is particularly promising
because of the tight integration between the problem domain and the solution domain — many problem domains can be
"naturally" represented in terms of interacting objects that map directly onto implementation constructs (Rosson and
Alpert 1990).

Over the last decade, several types of reusable analysis and design artifact have emerged from the OO community.
Design frameworks, for example, provide skeletal designs for certain well-defined domains, such as the Model-View-
Controller framework for user interface design in Smalltalk-80 (Deutsch 1989). The framework consists of a set of
closely related abstract and concrete classes that are specialized and instantiated for specific applications. More recently,
Fowler (1996) and Gamma et al. (1995) have documented dozens of reusable OO analysis and design patterns. Each
pattern represents an abstract solution to a recurring problem, and unlike a design framework is not programming
language-dependent.

The arguments and activity in support of OO analysis, design, and code reuse are appealing. However, the empirical
evidence is somewhat mixed. The following section reviews empirical studies of software reuse by individuals to assess
what we know about the cognitive costs and benefits of reuse. Given the scarce number of studies on OO analysis and
design reuse, we then review empirical studies of the OO modeling process to better understand how reuse might be
expected to influence the process.

Page 93

Empirical Studies of Software Reuse

Many case studies have reported strong positive outcomes from software reuse. For example, Hewlett-Packard observed
24-51% reductions in software defects and 40-57% increases in programmer productivity across several projects (Lim
1994). First Boston Corporation achieved an order of magnitude improvement in programming productivity one year
after the implementation of an integrated CASE tool and reuse program (Banker and Kauffman, 1991).

On the other hand, there is also considerable evidence that the vision of widespread, systematic software reuse remains
elusive in practice. For example, in the First Boston case cited above, over 60% of the reuse derived from programmers
reusing their own code although the reuse library contained many reusable components authored by other programmers.
Fichman and Kemerer (1997) examined four case sites that had adopted OO technology to encourage and improve
software reuse. Reuse in these sites was limited to the reuse of low-level objects such as strings and containers or to
salvaging code for a system rewrite. Other studies of OO programmers have observed "code scavenging" (copying,
pasting, and editing code from one application to another) as the dominant form of reuse (Lange and Moher 1989;
Detienne 1991). While these types of reuse can certainly be useful, they fall considerably short of the productivity and
quality gains that are promoted with OO technology.

One of the obstacles to reuse is that it is a cognitively demanding activity. The reuse process consists of retrieving,
understanding, mapping, and modifying (Gick and Holyoak 1980; Biggerstaff and Richter 1989). Individuals will be
unlikely to reuse unless they perceive that the cognitive effort and time required to locate, understand, and apply an
existing artifact is less than the effort and time required to create a new artifact "from scratch" (Prieto-Diaz 1989). In
addition, there may be cultural and attitudinal obstacles such as the reluctance of programmers to reuse artifacts they
themselves did not create (the NIH or Not Invented Here syndrome), or the belief that reuse is akin to copying (Hoadley
et al., 1996).

Several studies have experimentally examined the reuse of programming, design, and systems analysis artifacts, albeit
not in an OO-specific context. These studies shed some light on the specific processes that can make reuse a difficult
endeavor. For example, Woodfield et al. (1987) showed that programmers performed poorly when asked

Page 94

to evaluate the reusability of given abstract data types. They consistently underestimated the effort needed to adapt an
existing abstract data type to a new situation. In some sense, this finding is not surprising, as software engineers are
notoriously poor at effort estimation (Boehm and Papaccio, 1988; Brooks, 1990).

Another problematic aspect of reuse is analogical mapping. Analogical mapping is the identification of appropriate
similarities between the reusable artifact (the source) and the current problem (the target) (Gick and Holyoak 1980).
Successful mapping requires that the source and target domains are understood and appropriately compared. The
difficulty of analogical mapping depends, in part, on the similarity between and the familiarity of the source and target
domains (Gentner, 1983). In Kim and Lerch's (1997) study, subjects were given an OO program to reuse in solving a
new problem. For one group (the control group), the target task was nearly the same as the source problem. Reuse in this
condition was expected to be easy and successful, and in fact, all subjects in this condition successfully reused the given
program. In the other group, the source and target tasks had the same entities and objectives but differed in terms of the
entity roles and relations. Only one third of these subjects succeeded in reusing the source program. They attempted and
failed to map the source solution directly to the target solution and succeeded only after they retrieved or constructed an
intermediate representation to "bridge" the cognitive distance between the source and target representations.

In Maiden and Sutcliffe's (1992) study, experienced and novice analysts were given a structured analysis artifact to reuse
on a new modeling problem. In this case, the source artifacts were structurally similar to the target problem. Most of
their subjects attempted reuse and the solutions of the reusers were more complete than the solutions of the control
subjects. However, novices tended to "lazily copy" from the source example rather than carefully applying and
modifying the source to suit the requirements of the target problem.

The studies by Kim & Lerch (1997) and Maiden & Sutcliffe (1992) suggest that the extent and type of source-target
similarity is an important issue for successful analogical mapping and subsequent reuse. In Kim & Lerch's study, the
source representation had to be transformed to an "intermediate" representation before it could be applied to the target
problem. Very few subjects were able to make this transformation. In the Maiden & Sutcliffe study, an intermediate

Page 95

representation did not appear to be needed, and subjects recognized the analogy between source and target. However, the
high degree of similarity in this case seemed to promote sloppy reuse among novices.

Empirical Studies of OO Modeling

There is an abundance of empirical research on conceptual modeling and software design that provides a foundation for
understanding how reuse may fit into the OO modeling process. Research in this area focuses primarily on the modeling
or design activities, difficulties, and decomposition strategies used by experienced and novice designers.

Design activities focus on what individuals do as they work on a design task. For OO design tasks, several consistent
results have been observed for novices. For example, novices tend to focus first on problem domain entities and then on
class identification, which is consistent with the approaches prescribed in many OO analysis and design texts (e.g.,
Jacobson 1992). Novices have difficulty translating domain entities into a stable set of classes, and they postpone
consideration of functional details such as method specification until much later in the modeling process (Pennington et
al., 1995; Detienne, 1997). Novices also tend to have difficulty with core OO concepts such as inheritance and
distributed functionality (message passing). Inheritance is often used inappropriately to capture composition
relationships and distributed functionality is inappropriately replaced by something akin to a "main" procedure in
structured programming languages (Rosson and Carroll, 1990; Detienne, 1997). Presumably, reuse could help novices
with one or more of these difficulties, particularly since learning by example is an important and often-used strategy for
them (Anderson and Thompson, 1989).

Empirical studies of experienced OO designers show that they transition easily from the problem domain to the solution
domain and spend most of their time working with solution domain constructs (Pennington et al., 1995). They evaluate
their solutions extensively primarily through mental simulation (Srinivasan and Te'eni, 1995). As mentioned earlier,
expert designers use solutions from their own experience as a natural part of their problem-solving process. The reuse
challenge for experienced designers is, thus, considerably different than that for novices. The reuse of OO analysis and
design artifacts may be most likely to aid the experienced designer when he

Page 96

or she is working in an unfamiliar domain.

Design strategies can be described in terms of what drives the overall structure of the solution and
how the problem is decomposed into subproblems. The overall structure of the solution can be
function-centered, object-centered, or procedure-centered (Detienne, 1997). The use of one
structuring method over another seems to depend both on the designer's expertise (e.g., novices tend
to use a procedure-centered plan) and the type of problem (e.g., problems with a strong data
emphasis and complex hierarchical structure lend themselves to an object-centered approach)
(Detienne, 1997; Pennington et al, 1995). Several types of decomposition strategy have also been
observed, including top-down decomposition (Jeffries et al., 1981) and opportunistic design (Visser
1990). In Pennington et al's (1995) study, the experienced procedural designers displayed clear
patterns of opportunistic behavior (i.e., jumping between levels of abstraction), and the experienced
OO subjects showed a somewhat less opportunistic strategy. However, we are aware of no studies
that investigate whether and how software reuse influences the design strategies employed by
experienced or novice analysts.

Summary

What does prior research tell us about the expected effect of reuse on the OO modeling process? We
know that reuse can present cognitive challenges, particularly if the source solution is far removed
from the target problem (Kim and Lerch 1997). In any case, additional cognitive effort must be
expended to understand the source solution and map between the source and target domains. If
mapping between the source and target domains is successful, we would expect that solving the
target problem will be easier than solving ''from scratch." This was the case for the control group in
the Kim and Lerch (1997) study. However, mapping between the source and target may also lead to
"lazy copying" and less rigorous evaluation of the target solution. This was the case for novices in
the Maiden and Sutcliffe (1992) study. And finally, it is unclear whether or how reuse influences the
overall design strategy used by novices or experts.

An Exploratory Study

We conducted an experimental study to investigate the impact of reuse on the OO modeling process.
Since the primary emphasis was

Page 97

on modeling processes rather than modeling outcomes, we relied heavily on concurrent verbal protocols (Ericsson and
Simon, 1993). This technique elicits a sequential trace of individual problem-solving behavior by asking each subject to
"think aloud" as he or she solves a problem. Sessions are audio- or videotaped and later transcribed for analysis.
Concurrent verbal protocols provide a high degree of data richness and have been used in many studies of design and
data modeling (Detienne 1991; Pennington et al., 1995; Srinivasan and Te'eni, 1995; Kim and Lerch, 1997).

In our study, participants were assigned to either a reuse or a control condition. Reuse subjects were given an example
problem and OO model solution (the source) to review, followed by the problem to be solved (the target). They were
told they could reuse the given example in any way they saw fit if they thought it would be helpful (Gick and Holyoak,
1983). The source problem was highly similar to the target problem and the source solution was designed to be highly
reusable. Control subjects were not given an example to reuse.

Eight subjects participated in the study. Three subjects were experienced OO analysts / designers who were recruited
from a Smalltalk Users Group. They had between four and ten years of professional OO development experience. The
remaining five subjects were novice OO designers. At the time of the study, they were nearing the completion of a
sixteen-week course on OO development. The course was largely project-based and included the analysis, design, and
implementation of a prototype system in Smalltalk. Prior to this course, the novices had not been exposed to OO
technology, although all had completed at least one programming course (typically in Pascal or COBOL). Participants
were randomly assigned to one of the experimental conditions, as shown below.

The target task was to construct an OO model for a hospital's activity-based costing system. The OO solution had to
include a class structure diagram showing classes, relationships, attributes, and methods. In the reuse condition, the
source example consisted of a problem description and completed OO model for a service organization's value-chain
analysis system. For both tasks, the primary system objective was to allocate organizational resources to activities in
order to track the costs of each activity. While there were several minor differences between the source and target
solutions, both consisted of three main subproblems: resources, activities, and allocations.

TE
AM
FL
Y

Team-Fly®

Page 98

Table 1. Experimental Design

Experience Level Reuse Condition Control Condition

OO Novice R1, R2, and R3 C1 and C2

OO Experienced R4 and R5 C3

Protocol Analysis

When data collection was completed, the videotaped sessions were transcribed and parsed into "thought fragments"
called protocol segments or statements (see Ericsson and Simon (1993) for details of the process followed). Protocol
segments that reflected verbatim reading of the target problem description or questions to the researcher were excluded
from further analysis. Each remaining protocol segment was then coded according to a predefined coding plan.

Coding proceeded in two phases. In the first phase, each protocol segment was assigned one of the following modeling
activity codes : (1) problem understanding (U); (2) solution development or solving (S); (3) solution evaluation (E); or
(4) planning or monitoring (M). Each activity code is described briefly below.

A problem understanding (U) code was assigned to protocol segments where the subject was focused on the problem
domain. This included rereading the task description to acquire information or clarify questions about the domain,
identifying high -level requirements, defining the system boundaries, or reasoning about the problem domain (Sutcliffe
and Maiden, 1992; Pennington et al., 1995). For subjects in the reuse condition, this code also included analogical
mapping activities, where the subjects was exploring the source problem and solution or identifying the parallels
between the source and target problem domains.

A solution development or solving (S) code was assigned to segments where the participant was constructing part of the
OO model. For example, a solving code was assigned when the subject listed potential classes, drew part of the OO
diagram, specified attribute or method details, corrected previous errors, or specified relationship cardinalities
(Pennington et al. 1995). In the reuse condition, this code was also assigned if the subject was constructing the target
solution while referencing the source solution.

An evaluation code was assigned to segments where the subject

Page 99

was assessing either the completeness or correctness of his/her solution. Evaluation activity included proposing
alternative solutions for consideration, providing the rationale for a chosen alternative, testing a solution through mental
simulation, and/or checking for missing or unmet requirements in the solution (Srinivasan and Te'eni, 1995). In the reuse
condition, an evaluation code was also assigned where the subject was assessing the correctness or completeness of the
source solution by comparing it to the source solution.

A monitoring code was assigned to segments where the subject was reflecting on the overall problem-solving process,
planning the problem-solving strategy, or deciding to change direction during the session (Sutcliffe and Maiden, 1992).
For subjects in the reuse condition, this code was also assigned where the protocol segment reflected an awareness of
being influenced by the source example or an explicit strategy to reuse the example.

In the second phase of coding, we examined the solving codes in more detail to determine the overall problem-solving
strategy used by each participant. A level of abstraction code was assigned to each protocol segment that was previously
assigned a solving code. The level of abstraction codes were similar to codes used in prior studies (Srinivasan and Te'eni
1995) and are defined below.

Level 1:
Specification of intra -class properties (i.e., attributes and methods). This is considered to be the lowest level of
abstraction since it pertains to the most detailed aspects of the solution.

Level 2:
Class identification.

Level 3:
Specification of generalization and recursive relationships.

Level 4:
Specification of association relationships. For the purposes of this study, an association relationship is considered to be
the highest level of abstraction because it involves relating two separate parts of the solution and recognizing that the
relationship itself has attributes and methods.

Each participant's protocol was coded independently by the two authors after training and practice sessions. The average
level of coding agreement on the activity codes between the two authors was 89% (ranging from 85-94%). On the level
of abstraction codes, the average agreement was 90% (ranging from 80 -94%). These agreement

Page 100

rates reflect a respectable level of inter-rater reliability, comparable or better than those reported in other studies
(Sutcliffe and Maiden 1992).

Two types of analysis were performed on the coded protocols to examine the similarities and differences in problem-
solving activities and processes within and across groups. First, for each protocol, the number of segments in each
activity category was tallied and then divided by the total number of segments in that protocol. The resulting percentages
give a rough estimate of the time or cognitive effort devoted to each activity and are consistent with measures of time or
effort used in prior studies (Pennington et al. 1995). 1 Second, we created a transition graph for each participant that
plots the level of abstraction codes over the duration of the protocol. These transition graphs show the solution
development process in detail, emphasizing the shifts between higher and lower levels of abstraction over time
(Srinivasan and Te'eni 1995).

Results

The results of the study are organized into two sections. First, we discuss the impact of the reusable example on OO
modeling for novices. Second, we discuss the influence of the example on modeling for experienced OO analysts.

The Effect of Reuse on Novice OO Modeling

Table 2 shows the proportion of the protocol spent on each modeling activity for each of the five OO novices. Figure 1
compares the average effort devoted to each activity for the reuse and control groups.

As Table 2 and Figure 1 show, novices in the reuse condition differed from novices in the control group in several ways.
The reuse subjects, on average, spent more effort on problem understanding (40% versus 31%) and less effort on
evaluation (17% versus 30%). However, the two groups spent roughly the same effort on solution development (31%
versus 29%). Each of these observations is discussed in turn.

We expected the novices in the reuse condition to devote more effort to problem understanding because they had to
contend with the source example in addition to the target problem description. We examined the protocol segments for
reuse subjects and found that, on

Page 101

Table 2. Distribution of Protocol Segments across Activities for Novices.

 Problem
Understanding

Solution Development Evaluation Monitoring Total

Reuse Condition

N01 (R1) 46% 22% 23% 10% 100%

N05 (R2) 42% 25% 17% 16% 100%

N33 (R3) 32% 47% 12% 9% 100%

Control Condition

N04 (C1) 31% 27% 31% 12% 100%

N21 (C2) 32% 31% 30% 7% 100%

Figure 1.
Percent of Protocol Spent on Modeling Activities for Novices

average, sixteen percent of the understanding segments involved understanding or mapping from the given example (16%,
6%, and 26% for R1, R2, and R3, respectively). Typical statements in this category include:

R1 [while working on part of her OO diagram, stops and looks at the example problem description]: "So in this one, we are
overall trying to manage an organization's cost . . . so that's the same."

R2 [while working on part of his OO diagram, stops and looks at the example solution]: "So here they have Allocation [class]
to connect employees to activities."

R3 [after reading part of the target problem description]: "It does seem similar to that example, with tracking the cost of
things."

We expected that the effort novices devoted to understanding and mapping from the source problem would "pay off" by
making the

Page 102

construction of their OO models easier. However, as shown in Figure 1, there was little difference in the amount of
solution development activity between reuse subjects and control subjects. On average, 18% of the subjects' solution
development (S) statements involved reuse (18%, 28%, and 9% for R1, R2, and R3, respectively). While the novices did
attempt to apply portions of the source solution, these attempts did not reduce the overall effort devoted to constructing
the solution.

Figure 2 further illustrates this point. The figure shows transition graphs for two novices, one in the reuse condition (R2)
and one in the control condition (C1). Each transition graph shows the level of abstraction and the sub-problem of focus
for each solving statement over the duration of the session. As stated earlier, levels of abstraction range from level 1,
intra-class properties, to level 4, interclass association relationships. Each solving statement focused on one of three
main subproblems, which are labeled A, B, and C, respectively, in Figure 2.

Even if we consider only the subproblems where reuse occurred, there is little difference in the solving activity for reuse
and control subjects. For instance, most of R2's reuse statements focused on subproblem A. Yet there is little difference
in the amount of effort or the transitions between levels of abstraction for subproblem A across R2, C1, and C2. In all
cases, subproblem A is revisited multiple times

Figure 2.
Transitions between Levels of Abstraction for Novices R2

(Reuse Condition) and C1 (Control Condition).

Page 103

during the session and generally the higher levels of abstraction are addressed before the lower levels.

The third observation about novices in the reuse versus the control condition is that the latter subjects evaluated their
solutions more often than did novices in the reuse condition. We reexamined the evaluation statements for all novices
and classified each statement depending on whether the emphasis was on solution completeness or correctness.
Completion statements focused on whether an issue or problem had been addressed in the solution (i.e., Is it done?),
regardless of whether it was addressed well. These statements often depicted the subject ticking items on a mental
checklist, as in the following excerpts:

Activities, we've got that (R1).

OK, we have employee-related costs covered (C1).

Correctness statements, on the other hand, focused on whether an issue or problem was solved correctly (i.e., Is it
right?). For instance, subjects might evaluate a proposed solution by stating the rationale or modeling heuristic
underlying the solution, or by mentally simulating how the solution would work at runtime. The following excerpts
illustrate these types of correctness-centered evaluation:

The physician's bonus is important, but then I don't think it's important enough to generate another class (R2).

Billable activity should be a class because of the different variables (C2).

Oh, percent of time can't be there because we don't have that related to an activity (R1).

An activity should be able to compute its cost . . . because it knows all its sub-activities, and it knows every sub-activity's
cost according to what employees are assigned to it, and every one of those employees knows its cost, right? (C2).

In the reuse condition, 38% of the novices' evaluation statements were completeness-oriented, and almost a third of
these statements checked the target solution by comparing it to the source solution rather than to the target problem
requirements. The remaining 62% of the evaluation statements focused on correctness. The control subjects spent less
effort on completeness-checking (20% on average) and more on assessing the correctness of their solutions (80% on
average). Thus, the novices with a reusable example performed a less-rigorous evaluation of the target solution than did
the control subjects. It is

Page 104

interesting, however, that the reuse subjects' early evaluation statements were similar in nature to the control subjects. In
both situations, subjects used OO modeling heuristics to propose and assess alternative solutions. The control subjects
sustained this type of evaluation throughout the session. Reuse subjects, however, often turned to the example when they
couldn't decide how to proceed; from then on, most evaluation statements involved comparing the target solution to the
source solution or superficial checking of completeness.

A final point about the modeling process for novices in the reuse and control conditions pertains to their overall
modeling strategies. We found no evidence that the reusable example changed the way novices approached or
decomposed the problem. The example was used in an ad-hoc manner rather than as a consistent guide or resource. The
modeling strategy varied across individuals. R3, for instance, worked in a mostly bottom-up fashion. He began at the
lower levels of abstraction (identifying attributes and classes) and let these details drive the formation of the higher-level
structure. C2 and R2, on the other hand, tended to postpone many of the lowest-level details until the latter part of the
session. All novices, however, moved from subproblem to subproblem and within each subproblem, transitioned
between multiple levels of abstraction. All novices visited the more difficult subproblems (A and C in Figure 2) more
than once during the session.

The Effect of Reuse on Expert OO Modeling

Table 3 and Figure 3 show the distribution of experienced analysts' verbalizations across the four activity categories
(problem understanding, solution development, evaluation, and monitoring).

The first observation from Table 3 and Figure 3 is that the expert in the control condition spent more effort
understanding the problem requirements than did the reuse subjects (31% for C3, versus 16% and 22% for R4 and R5,
respectively). The effect of the example on problem understanding in this situation is interesting, particularly since it is
the opposite of what was observed for the novices. The example seemed to facilitate the experienced analysts' problem
understanding rather than to increase the understanding workload (as it did for the novices). For instance, R4 read a
portion of the target problem about tracking the time an employee spends on various activities. He immediately recalled
a partial solution from the source example and began

Page 105

Table 3. Distribution of Protocol Segments across Activities for Experienced Analysts.

 Problem
Understanding

Solution
Development

Evaluation Monitoring Total

Reuse Condition

E35 (R4) 16% 28% 33% 23% 100%

E37 (R5) 22% 33% 19% 26% 100%

Control Condition

E38 (C3) 31% 36% 22% 11% 100%

Figure 3.
Percent of Protocol Spent on Modeling Activities for Experienced OO Analysts.

evaluating its applicability to the target task. He transitioned from reading to evaluating and solving, with very few
understanding statements interspersed. The control subject, reading the same part of the target problem, said, "So let me re
read this, so we will be estimating time, hum." At several other points in the protocol he verbalizes other understanding
statements about this area, such as:

So employees and their costs are allocated to the activities they perform.

[re-reading] By allocating employees' time to activities they perform, the employee related cost, yeah, yeah. These allocations
also allow the clinic to determine where . . . Yeah, obviously, it's a time allocation thing.

The employee is based solely on this notion of the cost, employees have costs, spend time - so there's the time alloca-

Page 106

tion thing, working on activities.

The given example also helped the reuse subjects define the problem boundaries. The example may have indirectly
provided information to the reuse subjects about how much detail was needed in the solution. More of the understanding
protocol segments for the control subject (C3) were focused on exploring what was or was not within the scope, thinking
more deeply about, and clarifying issues about the problem than for the reuse subjects as illustrated by the following
statements. Not coincidentally, C3 also had the most thorough and detailed solution complete with code specification for
methods.

So why are benefits different for each employee? Hum, well, is there some relationship that relates an employee to a benefit
cost? I suppose it depends on what kind of offer that the clinic made to the employee.

Well, you do not know how much these hourly employees are working on overtime. And well, if you could do like you
could, assume an employee can be allocated more than 100% of his time? So if you have one of these hourly guys they
could work 125% and the extra 25% would be overtime.

So I guess I'm going to have to make an assumption at this point that the sources of data collection are . . . and I'm going to
make an assumption that an activity is a sequence of different tasks.

Figure 3 also shows that the control subject had more solving activity than the reuse subjects did. This may be partially
related to the prior point about the reuse subjects using the example to help define the boundaries of their solution. The
control subject developed his OO model to a far greater level of detail than was required for the task or attempted by the
other participants. This subject in fact wrote the Smalltalk code for each of his methods; whereas, other participants
specified the names of the methods and commented on what they would do (but not how they would do it). One of the
reuse subjects commented at one point, after specifying a method name, ''And I could write the code for that, but, I don't
think it's required for this." If C3's detailed method specification statements are excluded, the

Page 107

nature and amount of solving activity was similar across all experienced OO analysts.

One other difference between the reuse and control subjects is shown in Figure 3. The experienced OO analysts in the
reuse condition engaged in more monitoring activity than the control subject (23% and 26% for the reuse subjects versus
11% for C3). An examination of the monitoring statements for the three analysts showed no consistent differences in the
nature of these statements. The monitoring statements in all protocols consisted primarily of planning the overall
modeling strategy. The difference seems to be in the time or effort spent on monitoring rather than on the nature of these
activities. It is possible that R4 and R5 devoted more effort to these activities because they spent less effort on
understanding and, thus, had more time available for other activities.

Figure 4 shows the transitions between levels of abstraction for two experienced OO analysts, one in the reuse condition
(R4) and the one in the control condition (C3). As with the novices, these graphs chart only the solving activity (S-coded
statements) for each subject. The graphs also show which of the three main subproblems (A, B, or C) the subject worked
on at a particular time.

Both reuse subjects, R4 and R5, had fairly consistent problem-solving strategies (R4's is shown in Figure 4). Both
participants did

Figure 4
Transitions between Levels of Abstraction for Experienced OO Analysts R4

(Reuse Condition) and C3 (Control Condition).
TE
AM
FL
Y

Team-Fly®

Page 108

some preliminary solving as they read the target problem (as did many of the novices described earlier). After this, the
strategy was generally top -down, where first the overall structure of the solution was constructed, followed by
specification of the attributes and methods.

C3's strategy was somewhat different. He stated early on that he would do several "passes" through the problem. His
first pass consisted primarily of class identification (see Figure 4). Roughly halfway through the session, he began the
second pass where he solved each subproblem in detail. There is no evidence from the protocols to suggest that reuse
accounted for this difference in strategy.

Limitations, Implications, and Future Directions

The aim of the study was to explore the effect of a reusable example the cognitive processes of OO modeling. Before
discussing the implications of our findings, several limitations of the study deserve mention. First, as with many protocol
studies, the small sample size limits the generalizability of our findings. While our sample size of eight is not unusual for
this type of study (Jeffries et al. 1981; Lange and Moher 1989; Pennington et al. 1995; Srinivasan and Te'eni 1995), we
had only three experienced OO analysts, and only one of these analysts was in the control condition. Thus, caution must
be used in generalizing the findings to other analysts with different types of prior experience and exposure to OO
technology. Clearly more studies are needed with larger samples and subjects with different background.

Studies of reuse in other task situations are also warranted. In this study, the OO solution consisted of a class model
showing class names, attributes, methods, and relationships. Including a behavioral model with message passing could
easily change the complexity of the task. Indeed, task complexity is likely to have an impact of the level of reuse -
particularly for experts. Our study also used an OO model for a specific application as the source solution. Future work
should examine other types of reusable OO analysis artifact, such as the smaller and more abstract patterns described in
Fowler's book (1996).

The benefits of software reuse and the OO approach have been widely touted, but there has been very little theoretical or
empirical research on how or when the reuse of OO analysis artifacts can be effective, or how reuse changes the OO
modeling process. We were

Page 109

particularly interested in the cognitive costs and benefits of reuse. From prior research, we expected the primary cost to
be the additional effort needed to understand the source example and map between the source and target domains. We
expected the primary benefit to be the ease of constructing the target solution with reuse. In our study of eight novice
and experienced OO analysts, we found the following:

1. Novices in the reuse condition spent more effort on problem understanding than did the novices in the control
condition.

2. Experienced analysts in the reuse condition spent less effort on problem understanding than did the control subject.
The given example seemed to facilitate their understanding of the target problem and moved them more quickly into
constructing and evaluating their solutions.

3. The reusable example had no effect on the effort spent constructing the target solution. This observation held for both
novice and experienced analysts.

4. Consistent with Maiden and Sutcliffe's (1992) study, the novices in the reuse condition were less rigorous in
evaluating their solutions than were their counterparts in the control condition.

There are several implications of these findings for future research and educators. First, the lack of support for the "pay
off" to reuse requires further investigation. There are several plausible explanations for the lack of difference in solving
activity between reuse and control subjects. One is that not enough effort was invested in the upfront reuse activities of
source-target understanding and mapping. If the subject's understanding of source-target analogy was weak, then solving
by analogy may also be problematic and time-consuming. Alternatively, the analogy may be correct and subjects may
still have difficulty applying the analogy to solve the target problem. This may be the case particularly for novices who
have difficulty moving from the problem domain to the solution domain in OO design tasks (Pennington et al. 1995).
Finally, there may be an issue of "critical mass" - the effort spent on understanding a reusable artifact may not pay off
unless a large portion of the artifact is actually reused in the target solution. This may have been the case for our
experienced analysts, who reused less of the given example than did the novices.

A second issue for future research is the impact of reuse on

Page 110

solution evaluation. The results of our study along with those of Maiden and Sutcliffe's (1992) study suggest a hidden
cost to reuse for novices. If novices are able to recognize the similarity between the source and target problems, they
may adopt a problem-solving strategy that involves superficially copying the source solution and ignoring the original
target problem requirements. This strategy results in limited and superficial evaluation of the target solution. In cases
where the source solution must be modified or adapted to the target problem, this "lazy" reuse may actually lead to
worse solutions than if the target problem were solved from scratch. This has implications particularly for educators. For
educators, attention must be paid to how reuse is encouraged and taught. Novices must be encouraged to explore the
applicability of a reusable artifact and to identify areas where the reusable artifact is only partially reusable.

The third and final issue for future research is what we can learn from experienced analysts' reuse. In our study, the
given example helped the experienced analysts to understand the target problem - they spent less effort on problem
understanding activities than did the control subject. This may be a hidden benefit to reuse that deserves further
exploration. Further investigation of how experts comprehend analogies may help to foster more effective problem
solving behaviors in novices.

Endnote

1 As Pennington et al (1995) also note, time and effort are not the same thing. We do not have time-stamps associated
with each protocol segment, as time stamped data is also problematic. For instance, pauses would be extremely difficult
to code in a meaningful way.

References

Anderson, J. R. and R. Thompson (1989). Use of Analogy in a Production System Architecture. Similarity and
Analogical Reasoning. S. Vosniadou and A. Ortony. Cambridge, Mass., Cambridge University Press: 267 -297.

Banker, R. D. and R. J. Kauffman (1991). "Reuse and Productivity in Integrated Computer-Aided Software Engineering:
An Empirical Study." Management Information Systems Quarterly 15(3): 375-401.

Biggerstaff, T. J. and C. Richter (1989). Reusability Framework, As-

Page 111

sessment, and Directions. Software Reusability, Volume 1, Concepts and Models. T. J. Biggerstaff and A. J. Perlis.
New York, ACM Press: 1-18.

Boehm, B. W. and P. N. Papaccio (1988). "Understanding and Controlling Software Costs." IEEE Transactions on
Software Engineering 14(10): 1462-1477.

Brooks, F. P. (1990). No Silver Bullet: Essence and Accidents of Software Engineering. Software State-of -the-Art:
Selected Papers. T. D. Marco and T. Lister. NY, Dorset House: 14-29.

Cox, B. (1990). "Planning the Software Industrial Revolution." IEEE Software November: 25-33.

Curtis, B. (1989). Cognitive Issues in Reusing Software Artifacts. Software Reusability, Volume II: Applications and
Experience. T. J. Biggerstaff and A. J. Perlis. Reading, Massachusetts, Addison-Wesley: 269-287.

Detienne, F. (1991). Reasoning from a Schema and From an Analog in Software Code Reuse. Empirical Studies of
Programmers: Fourth Workshop. J. Koenemann-Belliveau, T. Moher and S. P. Robertson. Norwood, NJ, Ablex: 5-22.

Detienne, F. (1997). "Assessing the Cognitive Consequences of the Object-Oriented Approach: A Survey of Empirical
Research on Object-Oriented Design by Individuals and Teams." Interacting with Computers 9: 47-72.

Deutsch, L. P. (1989). Design Reuse and Frameworks in the Smalltalk -80 System. Software Reusability: Volume II,
Applications and Experience. T. J. Biggerstaff and A. J. Perlis. Reading, Mass., Addison -Wesley Publishing: 57-71.

Ericsson, K. A. and H. A. Simon (1993). Protocol Analysis: Verbal Reports as Data. Cambridge, Mass., MIT Press.

Fichman, R. G. and C. F. Kemerer (1997). "Object Technology and Reuse: Lessons from Early Adopters." IEEE
Computer 30(10): 47-59.

Fowler, M. (1996). Analysis Patterns: Reusable Object Models. Reading, Mass., Addison-Wesley Publishing.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable Object-Oriented Software. Reading,
Massachusetts, Addison-Wesley.

Gentner, D. (1983). "Structure-Mapping: A Theoretical Framework for Analogy." Cognitive Science 7: 155-
170.

Page 112

Gick, M. L. and K. J. Holyoak (1980). "Analogical Problem Solving." Cognitive Psychology 12: 306-355.

Gick, M. L. and K. J. Holyoak (1983). "Schema Induction and Analogical Transfer." Cognitive Psychology 15: 1-38.

Hoadley, C., M. Linn, et al. (1996). When, Why and How Do Novice Programmers Reuse Code? Empirical Studies of
Programmers, Sixth Workshop. W. D. Gray and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Company: 109 -
130.

Jacobson, I. (1992). Object-Oriented Software Engineering: A Use Case Driven Approach. Wokingham, England,
Addison-Wesley Publishing.

Jeffries, R., A. Turner, et al. (1981). The Processes Involved in Designing Software. Cognitive Skills and their
Acquisition. J. Anderson. New Jersey, Lawrence Erlbaum Associates, Publishers: 255-283.

Kim, J. and F. J. Lerch (1997). "Why Is Programming (Sometimes) So Difficult? Programming as Scientific Discovery
in Multiple Problem Spaces." Information Systems Research 8(1): 25-50.

Lange, B. M. and T. G. Moher (1989). Some Strategies of Reuse in an Object-Oriented Programming Environment.
Computer-Human Interaction '89, ACM.

Lim, W. C. (1994). "Effects of Reuse on Quality, Productivity, and Economics." Software 11(5): 23 -30.

Maiden, N. and A. Sutcliffe (1992). "Exploiting Reusable Specification Through Analogy." Communications of the
ACM 35(4): 55 -64.

Meyer, B. (1989). Reusability: The Case for Object-Oriented Design. Software Reusability: Volume II, Applications and
Experience. T. J. Biggerstaff and A. J. Perlis. Reading, Mass., Addison -Wesley Publishing: 1-33.

Pennington, N., A. Lee, et al. (1995). "Cognitive Activities and Levels of Abstraction in Procedural and Object-Oriented
Design." Human-Computer Interaction 10: 171-226.

Prieto-Diaz, R. (1989). Classification of Reusable Modules. Software Reusability, Volume I: Concepts and Models. T. J.
Biggerstaff and A. J. Perlis. Reading, Massachusetts, Addison-Wesley: 99-123.

Puhr, G. I. (1995). Analogical Reasoning and Reuse in Object-Oriented Analysis. Accounting and Information Systems.
PhD Dissertation, Boulder, University of Colorado.

Rosson, M. B. and S. R. Alpert (1990). "The Cognitive Consequences of

Page 113

Object-Oriented Design." Human-Computer Interaction 5: 345-379.

Rosson, M. B. and J. M. Carroll (1990). "Climbing the Smalltalk Mountain." SIGCHI Bulletin 21(3): 76-79.

Rosson, M. B. and J. M. Carroll (1996). "The Reuse of Uses in Smalltalk Programming." ACM Transactions on
Computer-Human Interaction 3(3): 219-253.

Srinivasan, A. and D. Te'eni (1995). "Modeling as Constrained Problem Solving: An Empirical Study of the Data
Modeling Process." Management Science 41(3): 419-434.

Sutcliffe, A. and N. Maiden (1992). "Analysing the Novice Analyst: Cognitive Models in Software Engineering."
International Journal of Man-Machine Studies 36: 719-740.

Visser, W. (1990). "More or Less Following a Plan During Design: Opportunistic Deviations in Specification."
International Journal of Man-Machine Studies 33: 247-278.

Woodfield, S., D. Embley, et al. (1987). "Can Programmers Reuse Software?" IEEE Software July: 52-59.

Page 114

Chapter VII—
How to Transform Legacy Systems into Object Oriented Systems

Hern án Cobo
Universidad Nacional del Centro De la Pcia. de Bs. Argentina

Virginia Mauco
Universidad Nacional del Centro De la Pcia. de Bs. Argentina

Introduction

The OO paradigm is the predominant software trend of the 1990s. According to the literature, it provides a unifying
model for various phases of development, facilitates system integration, allows prototyping, encourages software reuse,
eases system maintenance and provides support for extensibility (Meyer, 1997). An OO system is best developed
starting with OO analysis. However, some times this may be difficult because of the existence of so many systems
developed 20 or more years ago, which are still used. These systems are called legacy and may be defined as large
software systems people do not know how to cope with, but they are vital to organizations (Bennett, 1995). Hence, the
decision on how to manage them is crucial because they may represent years of accumulated experience and knowledge.
Besides, the software may be the only place where organizations business rules exist.

Maintenance costs are a major issue with software (Pressman, 1992). Legacy systems maintenance is a difficult task
because it is typical that during the maintenance process the structure and the documentation of the system deteriorate,
making the maintenance

Page 115

progressively harder. It is essential to record the understanding of the system before it is forgotten and to structure it in
such a way that it can be easily accumulated and retrieved. The development of new architectures and the improvements
in programming methods and languages, have caused a need to reverse engineer and reengineer existing program code
in order to get as much value as possible from legacy systems while exploiting the latest technology.

This chapter describes a project whose aim is to develop a tool to transform legacy systems in order to simplify and
improve their maintenance and understanding, taking benefit from OO technology. To achieve this, it is necessary to
capture and recover all the knowledge extracted from imperative programs and store it in a higher level structure, which
can be analyzed and manipulated. From this structure objects and classes are recognized and extracted to rewrite the
program in an OO language. Besides preserving the original functionality, the new code generated should be structured,
legible, modular, reusable, and more easily maintainable. The only source of information is programs imperative source
code, and its quality has a great influence on the quality of the recovered objects. To minimize this influence, programs
are first syntactically restructured and modularized. As part of this research, a prototype has been developed which
implements the algorithms to restructure, modularize and extract objects automatically. Human intervention is allowed
in order to improve the results.

Background

There has been a lot of work done to improve the quality of legacy code because it has a great impact on legacy systems
comprehension, maintenance and evolution. All these efforts may be referred to as software reengineering activities
(Arnold, 1994). Reengineering generally includes some form of reverse engineering to achieve a more abstract
description, followed by some form of forward engineering or restructuring (Chikofsky & Cross, 1994).

Two different techniques, which are the basis to be used in many reengineering tools, have been defined for translating
source code. Program translation via transliteration and refinement is the standard approach. The alternative approach is
called translation via abstraction and re-implementation. In this process, the source program is first analyzed in order to
obtain a programming -language-independent

Page 116

abstract description of the computation being performed. Following this abstract description, the program is then re-
implemented in the target language. The central feature of this approach is the abstraction step as it allows the translator
to benefit from a global understanding of what the source program does (Waters, 1994).

From the definition above, it follows that there are two principal issues to be considered in translating a program via
abstraction and implementation. One of them is the definition of a repository to represent data and knowledge extracted
from the program and the implementation of the processes to capture and store them in the repository besides the
processes to recover this information from the repository. The other issue to be taken into account is the definition of the
reengineering transformations that will be done based on the information stored in the repository.

The internal representations chosen for a software system play a critical role in the reengineering process because they
may constrain the types of transformations to be applied to programs, and a specific transformation may require the
representation to have determinate features. Each representation is most adequate in specific contexts (Ottenstein &
Ottenstein, 1984). Abstract syntax trees, for example, are a good starting point for thinking about the translation of an
input string (Aho, Sethi & Ullman, 1986). They are suitable when the only concerns are edition and the generation of
straightforward code. Another representation called program dependence graph was originally defined as an
intermediate program representation well suited for compiler optimizations (Ferrante, Ottenstein & Warren, 1987). But
later work showed the advantages of using this representation in software engineering (Binkley, Horwitz & Reps, 1995;
Cobo & Mauco, 1996; Horwitz & Reps, 1992b; Horwitz, Reps & Binkley, 1990a). A program dependence graph can
support editing, translating, debugging and program metrics; it is open to incremental data flow update and it is ideal to
compute slices (Ottenstein & Ottenstein, 1984).

There exist several works aimed at improving software quality and understanding to support many maintenance and
reengineering activities, by means of transformations defined over the information about a program stored in the
repository. Some of them are based on trying to understand or improve a program by automatically recognizing
instances of known code patterns, named plans or clichés, and organizing them hierarchically to build a description of
the program

Page 117

(Bush, 1985; Fiutem, Tonella, Antonio & Merlo, 1996; Rich & Wills, 1994; Quilici, 1994). The definition and updating
of a library of clichés complete enough, the existence of idiosyncratic code, and the application to programs of a
determinate domain can be mentioned as some disadvantages of this approach.

Restructuring is one of the oldest and most refined reengineering techniques (Arnold, 1994). Many algorithms have been
defined to restructure programs by introducing new variables in them (B öhm & Jacopini, 1966; Linger, Mills & Witt,
1979). These algorithms work with any arbitrary program, but they always change program topology, even in structured
programs.

Program modularization consists of decomposing a monolithic program or module and replacing it with a functionally
equivalent collection of smaller modules (Pressman, 1992). Different strategies have been defined to extract functions
from programs and they analyze functions as candidates for reuse or to rewrite the program, in a modular way according
to the goals of each work (Burd, Munro & Wezeman, 1996; Cimitile, DeLucia & Munro, 1995; Lanubile & Visaggio,
1997). Many of these works employ program slicing, a program decomposition method well suited for isolating
functionality in a program. It is a technique for restricting the behavior of a program to some specified subset of interest,
which automatically decomposes a program by analyzing its data and control flow (Weiser, 1984).

Migrating imperative to OO code has been receiving considerable attention during the last years. The migration from
imperative programs to OO ones points to construct a hierarchy of classes that perform the same computations as the
original procedures. Each class encapsulates a data object and a number of methods for processing that data object.
Several techniques have been proposed to identify object-like features in imperative programs (Cremer, 1998; George &
Carter, 1996; Jin, Mah & Shin, 1997; Liu & Wilde, 1990; Livadas & Roy, 1992). Other approaches were specially
designed to programs written in a specific programming language, like Fortran (Ong & Tsai, 1993; Subramaniam &
Byrne, 1996) or Cobol (Beziven, Lennon & Nguyen, 1995; Sneed, 1996). All these works agree in that transforming an
imperative program into an OO one is a difficult task which cannot be completely automated. The automated techniques
are only able to identify potential objects and their feasibility can only be assessed by human intervention.

TE
AM
FL
Y

Team-Fly®

Page 118

Studying the Problem

In most cases, source code is the only documentation available of legacy systems. For this reason and before object
generation, source code features influence was carefully analyzed. Therefore, to obtain an OO system from a legacy
system different ways to improve code, such as restructuring and modularization, were studied first to get a clear and
adequate partition of the integral system.

Another of the most important problems is to design a repository to store and to manipulate legacy systems in order to
improve and update them according to the last technologies.

Alternative of Intermediate Representations

Many intermediate representations have been defined to store information about a program. Some of them are oriented
to reflect a program's control structure; others, are centered in a program's hierarchy, and finally there are some more
specific which are not based on any of the previously mentioned ones.

Control-oriented Representations

They cover the needs for representing any control structure since they are based on atomic actions such as conditional
and unconditional jumps. Another important feature of these representations is that they make easier a program's control
flow extraction. One of the most popular is the Three-Address Code (Aho et al., 1986).

Hierarchy-oriented Representations

They propose top-level structures with important semantic information in order to deduce the control aspects of each
one. On the other hand, they represent a program's hierarchical structure in a very natural way. One of the most used is
the Abstract Syntax Tree (Aho et al., 1986).

Restructuring

A structured program is a compound program constructed from a fixed basis set {sequence, if-then-else, whiledo}
(Linger et al., 1979).

Code restructuring algorithms can be split into two groups: a) The restructuring process implies the modification of the
original

Page 119

program, adding one or more control variables which allow structured code simulation.

b) The restructuring process involves the recognition and replacement of unstructured code portions by structured
clichés.

Among the ones belonging to the group a), Böhm and Jacopini's (Böhm & Jacopini, 1966) and Linger, Mills and Witt's
algorithms (Linger et al., 1979) can be mentioned. Both algorithms always modify the program's general structure.

Some problems of the algorithms classified within group b), as Bush's algorithm (Bush, 1985), are the definition and
update of the cliché library in order to contain as many cases as possible, the existence of non recognizable code and the
limitation of their application to programs of a given domain.

Modularization

Interleaving is a source of difficulties when trying to understand a program (Rugaber, Stirewalt & Wills, 1995). It makes
it difficult to accomplish a variety of tasks such as extracting reusable components, localizing the effects of maintenance
changes and migrating to OO languages.

For this reason, it would be desirable to maintain the interleaving degree of the incoming code at a minimal level.
Otherwise, techniques to detect and eliminate it would have to be applied.

A way to improve the comprehensibility and maintainability of a legacy system is modularization (Cimitile et al., 1995).
In particular, there are three goals that modularity tries to achieve in practice: capability of decomposing a complex
system, of composing it from existing modules and understanding the system in pieces. To accomplish modular
composability, decomposability and understanding, a system should be divided in modules with high cohesion and low
coupling (Pressman, 1992).

Normally, modularization algorithms use program slicing to break large programs into manageable pieces functionally
equivalents.

Program slicing is a technique for restricting the behavior of a program to some specified subset of interest (Weiser,
1984). A slice S(v,n), of a program P, on variable v, or a set of variables, at statement n yields the portions of the
program that contributed to the value of v just before statement n is executed. S(v,n) is called a slicing criterion.

Page 120

Slices can be computed automatically by analyzing data and control flow. A program slice has the added advantage of
being an executable program.

If a program is represented by its program dependence graph, the slicing problem is simply a node -reachability problem;
thus, slices may be computed in linear time (Horwitz et al., 1990a).

Different types of slices have been defined. One of them is the output -restricted slice, which is a slice without output
statements. Output statements are as windows into the current state of computation which do not contribute to the
realization of the state (Gallagher & Lyle, 1991).

Object Extraction

In a conventional programming language, an ''object" can be identified as a collection of routines, types, and/or data
items (Liu & Wilde, 1990). The routines will implement the methods associated with the object, the types will structure
the data it encapsulates or processes and the data items will represent the actual instances of the class.

The candidate "objects" will be a list of three sets:

Candidate Object = (F, T, D) where F is the set of routines, T is the set of types and D the set of data items. Anyone of
these sets can be empty.

The goal is to find a useful partial classification of routines, types and data items, meaningful in the context of the
program and its real world domain.

A large part of the information for this classification can be obtained analyzing the relationships among the components
of the program, but carefully selected heuristic or human intervention will be needed to eliminate casual or without
sense relationships.

Ideally, sets from different objects should not overlap, and then a routine, type or data item should not appear in more
than an object. However, it is not required that objects be completely disjoint since object identification methods should
capture those situations in which efficiency considerations forced the programmer to transgress good design principles.

In addition, the definition given above does not distinguish clearly between the concepts object class and object. In some
cases, it can be easier to find first the class and then its instances and in others,

Page 121

inside out. Therefore, it is more convenient to try both together.

The two approaches to find objects seem to be useful. The first one is based on persistent and global data and establishes
links with the routines that manipulate it. The second one is based on data types and establishes relationships among
these types and the routines that use them as formal parameters or return values. A detailed description of two methods
to implement these approaches can be found in Lui & Wilde (1990).

A Solution to Reengineer Legacy Systems into OO Systems

As part of this project two structures have been defined to store legacy systems in a form independent from their syntax
and attempting to obtain more abstract information to accomplish global transformations to the system.

One of them, called Intermediate Language (IL), was specially designed to allow the tool to be used with programs
written in different imperative languages. An advantage of this structure is that the algorithms designed to enhance code
quality are independent from the original source code. It also allows rewriting the improved programs in a language
different from the original one. The languages considered were Pascal, Cobol, C and Fortran. The other structure is the
Extended Program Dependence Graph (EPDG), which is an extension defined over the Program Dependence Graph
(Ferrante et al., 1987). It was designed to store and manipulate in an easy way the information represented in the IL.

The reengineering process is decomposed in three steps: code restructuring, modularization and object extraction. All
these topics are treated below.

Figure 1 shows a diagram with the general structure of the whole project.

Intermediate Language

Using the most useful features of the two alternative representations described before and considering the issues
concerning this project, the IL was defined. The IL maintains two different views of the control structure of a program.
It gives a global view, by means of block statements, and it also maintains all the primitive statements

Page 122

with control flow level of detail to allow regenerating automatically the original code. In consequence, it represents a
tree structure that shows a hierarchical view of the program in which the leaves compose a directed graph that
reproduces the original control structure.

A detailed study of the selected languages helped to obtain a set of statement-types that shared the analyzed languages.
Such statements were represented in IL in different ways. Some of these statements maintain a one-to-one
correspondence with their representation in IL. They were built grouping the common characteristics in the chosen
languages.

Another more complex functionality needed more than one IL statement to be represented. Therefore, it was necessary
to create another type of statement with a higher abstraction level (block statement) to include all the atomic statements,
so as not to lose referring information to the original ones. This kind of statement was also used to characterize
statements that were not common factors in the four languages considered, but that could be built composing other
simpler ones.

Besides, proper IL primitive statements were defined to represent

Figure 1.
General structure of the whole project.

Page 123

control structures like conditional and unconditional jumps and labels.

Finally, a statement form called particular was created to represent the uncommon statements but which could be
composed by relationships among the already defined ones. In summary, the IL statements are classified in two levels:
one lower and indivisible in which the simplest statements of basic functionality are represented

Figure 2.
A small Pascal program and its IL and labeled graph representations.

Page 124

and another of higher abstraction for the more complex functionality statements.

Figure 2 shows a small program written in Pascal and its representation in IL. As can be seen clearly, the abstraction
level represented by the block statements SUBROUTINE and LOOP contains the low-level statements that form the
program's control flow.

A system in IL is represented in different abstraction levels. The low -level statements are linked mutually to form the
control structure of the represented program for this task they have control primitives already mentioned. The higher
level statements reference the primitive and simple statements. Furthermore, they are used to refer to the statements that
are contained in block structures such as loops, conditionals, and so on. It is also important to emphasize that these types
of statements do not form part of the control flow.

There are primitive statements in some languages that involve more than one conceptual action. In this case, a block
statement of IL is used which includes all the corresponding IL primitive statements to accomplish the equivalent task.
For example, a block statement that contains two primitives, the first one to write and the other to advance, represents
the statement written in Pascal.

All these statements are in a structure that stores them. Each statement has an identification number, the original
statement text in the source program and a number used by primitive statements to refer to the block statement in which
they are contained.

Extended Program Dependence Graph

The EPDG is the other structure defined. It is a directed graph whose nodes are connected by different types of edges.
The nodes correspond to program statements (assignments and control predicates), and the edges represent data or
control dependences among these statements. The set of these dependences induces a partial ordering on the statements
in a program that must be followed to preserve the functionality of the original program.

The dependences are of two types. Data dependences emerge between two statements when a variable that appears in
one of them could have a wrong value if the two statements are inverted in their execution. Control dependences hold
between a statement and the predicate whose value controls immediately the execution of that statement.

Page 125

Control dependence edges are labeled T or F, and the source of an edge of this type is always the Entry node or a
predicate node. Data dependence edges are labeled with the name of the variable that origin them.

One of the most important characteristics of the EPDG is that it exposes potential parallelism. This means that two nodes
n1 and n2 may be executed simultaneously unless a dependence between them exists.

The EPDG can be considered divided into two components: the control dependence subgraph and the data dependence
subgraph. The control dependence subgraph contains information about control dependences that exist among the
statements in the program. It is built from the program control flow graph and the post-dominator tree (Ferrante et al.
1987). Each node n of this subgraph has a level number that represents the length of the path from the initial node of the
subgraph to the node n. The addition of the level for each node allows one to determine quickly and simply if a program
is or is not structured. Moreover, it contributes to simplify the transformations defined to transform an unstructured
program into a structured one (Cobo & Mauco, 1996). The data dependence subgraph contains the information
concerned with data definitions and uses in a program. It is constructed using a variant of data flow equations (Aho et
al., 1986) and a list of used and defined variables for each node. In the original program dependence graph, a final use
node is included for each variable v to represent the final value of v when the program finishes. But frequently, a same
variable may be used in a program to store different and independent computations. To reflect this fact, the EPDG
contains one final use node for each different use of the same variable.

A program written in IL is represented with a set of EPDG's; one of which corresponds to the main program and the rest
to each one of its subroutines. To construct it, a control flow graph and a post-dominator tree are generated for the main
program and for each subroutine. Each program statement is represented with a node in the corresponding control flow
graph, with the exception of jump statements (go to) that generate edges, and subroutine call statements that are
represented with a node and a call edge whose destination is the control flow graph of the corresponding subroutine.

During this construction process jumps are solved in such a way

Page 126

Figure 3.
A System Extended Program Dependence Graph

that they do not exceed the boundaries of each subroutine. In this way, the only one possible relationship between any
pair of control flow graphs is through the edge that represents the subroutine call.

Thus, a set of EPDG's linked through call edges is obtained which is called System EPDG. In each EPDG, each node
represents an IL statement and it is control dependent on nodes of the EPDG to which it belongs. The determination of
the level of each node of an EPDG is independently computed for each EPDG. Figure 3 contains a very simple System
EPDG.

Restructuring Step

The Restructuring Step turns an arbitrary unstructured program into a functionally equivalent structured one. As stated
before, a program is structured if it is built only combining sequence, selection and iteration control structures.

An EPDG is structured if it is built from the composition of the control structures just mentioned. In a structured EPDG
each node is control-dependent on only one of the nodes of the immediate superior level. This implies that the subgraph
induced by control dependences is a tree. Therefore, a program is structured if it can be represented with a set of
structured EPDG's. To determine that a program is not structured it will be necessary and sufficient to find a control
edge that destroys the tree structure of at least one of the EPDG's that constitute its representation.

Page 127

The restructuring process analyzes each EPDG separately to determine if there are control dependences that break the
tree structure. If one is found, the restructuring algorithm defined in (Cobo & Mauco, 1996) is applied to the
corresponding EPDG. It is important to emphasize that this algorithm does not modify the EPDG subgraphs which were
already structured. Furthermore, as it is only applied to unstructured EPDG'S, the program subroutines already
structured preserve their original structure.

Modularization Step

The Modularization Step decomposes a monolithic structured program into a functionally equivalent collection of
smaller modules, combining program slicing techniques and a set of criteria like cohesion, coupling, fan-in, fan-out,
factoring, and so on.

A variant of output-restricted slice was defined to capture all relevant computations involving a given variable. Thus, it
does not depend on statement numbers as the original slice definition. Besides, this variant takes as reference the final
use nodes to compute one slice for each computation. Following this definition, a slice is constructed for each different
use of each variable in the program.

A lattice ordered by set inclusion is then created to determine the relationships between the computed slices (Gallagher
& Lyle, 1991). The lattice is a graph, where each node represents a slice and each edge the relationship "is included in."
This structure is called Slices Inclusion Graph (SIG). Each node stands for a candidate module, and a node included in
more than one slice expresses code reusability. The leaves of the SIG are called maximal slices, and they represent the
more relevant system's computation since they are the program's outputs. The other nodes are partial results, but
essential to compute the maximal ones.

The SIG represents a program decomposition into modules. At a glance, maximal slices should be modules, since
generally program's outputs are the externally visible manifestation of functionality (Bieman & Ott, 1994). On the other
hand, nodes further from the leaves have less possibility of being modules. However, to evaluate if each slice is a
worthwhile module a deeper analysis for each slice is required. The analysis comprises the two stages explained below.

TE
AM
FL
Y

Team-Fly®

Page 128

Decomposition

The program slicing technique, allows a statements to be included in more than one slice which expresses that s is
required to compute different variables. Therefore, an analysis should be made to ensure that the repetitive execution of
a statement does not change the original functionality.

The concept of duplicated statement is then introduced to define a statement whose repetitive execution does not
produce side effects. Thus, each statement is labeled as duplicated or non -duplicated. With this classification, a study of
each node of the lattice is done. The aim is to detect and remove from the graph those slices reused more than once with
at least a non-duplicated statement. Hence, it can be assured that non -duplicated statements are executed only once.

Applying the program slicing technique for each variable in the program allows to obtain a maximal program
decomposition. Nevertheless, some computations do not give new information. So, it is interesting to detect and remove
this kind of slices.

Another concept, called complement, is used (Gallagher & Lyle, 1991). The complement c of a slice s is constructed by
removing the statements of s from the original program. Since c must be executable, there will be certain crucial
statements that are necessary in both the slice and the complement. The complement is computed for each node of the
SIG. If the original program and the complement are the same then the slice is removed from the graph.

Although the program slicing technique obtains a good system decomposition, sometimes code duplication is presented
as a drawback. There are certain portions of code that are not an independent slice but are duplicated in more than one
slice. Generally, those sets of statements are partial computations of the same variable, which occasionally have a
semantic meaning in the application domain. Therefore, an analysis should be made to detect and extract them as
modules.

The concept of reused statement is then introduced to define a statement that belongs to more than one slice and is not an
independent slice. Each slice is represented with a characteristic vector. This vector is the implementation of the
characteristic function. Sets of reused statements are obtained applying intersection, union, complement and difference
operations between the characteristic vectors.

Page 129

Each set is completed to form a slice and then the SIG is regenerated to include the new slices.

Composition

The SIG is at the maximal decomposition level. Each slice represents a candidate module that must be analyzed
considering some criteria before its implementation.

The algorithm ensures that the slices obtained have high cohesion and low coupling, since they compute a single output
(Ott & Thuss, 1989).

Other criteria are evaluated for each node of the SIG like fan-in, fan-out, lines of code, tokens count (Pressman, 1992). If
a slice does not verify the criteria, it is removed from the SIG. Once the analysis is finished, the program is rewritten in
IL, and it is ready to be translated to the desired source language.

Different systems, languages and users may have distinct criteria to define a good module.

The prototype takes this into account giving the possibility to specify some variables like optimal number of statements
for a module.

OO Conversion Step

Since the concept of OO programming increases maintainability and reusability of systems, the last step, called OO
Conversion Step, aims at turning a structured and modular imperative system into an OO one. Potential classes are
identified (including the instance variables and methods), using two complementary methods based on an analysis of
global variables and data types (Liu & Wilde, 1990).

Both methods were studied and analyzed to find their advantages and disadvantages. This suggested that the better way
to obtain objects from structured and modularized imperative systems is combining these methods. In this combination,
global variables, which show the existence of a class instance, and data types, which represent in a primitive form the
object classes in the imperative languages, should be taken into account. The more complex part is the definition of such
combination in order to get the better results. It was also concluded that if only source code is going to be considered, a
better way for locating potential objects different from the previously mentioned ones does not exist.

Page 130

First of all, the global based method is applied. The instance variables of each one of the classes that emerge by this
method are the globals that remain grouped. Next, the types based method is applied without taking into account the
routines assigned to the classes computed by the previous method. The instance variables of each one of the classes
defined by this method are the fields, if a record is being considered. In any other case, as the class is a specialization of
some existing class (for example, the Array class), it has no instance variables. In either case, the methods of each class
are the routines assigned to it.

However, it is probable that some routines and global variables remain without being assigned to any object. The
routines are those that neither use nor modify global variables directly and have no parameters. The global variables are
those which are neither used nor modified directly in any routine but are real parameters of user-defined routines.

Then the system class is identified. It is the class which has among its methods the routine that was the main program in
the imperative source code. Nevertheless, if the routine that was the main program does not appear among the methods
of any class, the class system is created. In both cases an instance variable for each class determined by the global
method is added to its instance variables. It also added one instance variable for each global variable remaining
unassigned. Its methods are increased with the unassigned routines.

In addition, the instance variable parent is added to each one of the identified classes, with the exception of the system
class. It is a reference to an instance of the system class. An alternative would have been that the system class was
accessed by other classes through inheritance. However, this option might be only viable if multiple inheritance was
available— if this was not the case, such inheritance link might produce conflicts with other possible parents. For this
reason, to reach the stated objectives and though it was less convenient, a client link was selected in place of the
inheritance link.

Since the system class is the one which contains among its methods the routine that was the main program in the source
code, it activates the program's execution.

The greatest present inconvenience is inheritance detection within the extracted objects.

There are two ways of using a class: inheriting from it or being its

Page 131

client. None of the aspects of objects technology cause so much discussion as when and how to use inheritance (Meyer,
1997). Besides, during the development of this work the existence of a third relationship was found: different
implementations of the same object. This is due to the fact that in imperative programming there is a tendency to
distribute a form of data (object) according to its persistence (dynamic structures, files, tables and so on). It is not
possible to detect syntactically if one of these three relationships is present, or if none of them holds.

Furthermore, in (Benedusi, Ibba, Naddei & Natale, 1993) it is assured that the similarity among routine names and/or
data structures is not reliable. There can exist ''false homonymous" that accomplish completely different functions (or
implement different data structures), and also "unknown synonyms" can have the same internal structure and accomplish
exactly the same function. As a rule, the structural similarity (combining aspects of data and control flow) is not
necessarily connected with functional similarity. The checkups of functional similarity are accomplished with the
intervention of human experts. Perhaps the case that could be detected with greater safety is that of different
implementations of the same object, if one corresponds to objects stored in a principal memory structure and the other,
to objects stored in a secondary memory structure.

After a study of many cases and alternatives of imperative code for objects with and without inheritance it was
concluded that the following elements might syntactically be analyzed:

Attribute names, Attribute types, Functions and procedures in which attributes appear as parameters and Modules
functionality. It can also be asserted that none of these elements is reliable to detect inheritance automatically from
source code of a structured and modularized program because syntactic similarity does not have to mean semantic
similarity.

Future Trends

The development of an interactive reengineering toolkit would be really helpful because in legacy systems, source code
constitutes a rich domain of structural as well as flow information. This toolkit would have to automatically construct
visual representations from source code and it would have to allow manipulating and modifying the code directly in the
visual environment. Thus, the software engineer would

Page 132

be allowed to graphically view source code at a higher degree of abstraction. Besides, it would be interesting to let the
user select any desired level of granularity to view source code. All these facilities would produce a significant positive
effect on program comprehension and understanding. In particular, the tool should assist the user during the
restructuring step and most importantly during modularization and OO conversion. It would be of great help if the tool
gave assistance to let the user modify the program once the OO program is derived. The structure of OO software is
based on classes and their relationships; thus, OO source code modification can be seen as modifications of class
structures and of the relationships among these classes. A standard OO design notation, like UML (Rational Software
Corporation, 1997), can be used to represent the static structure of classes, attributes and methods, and the relationships
between them such as inheritance.

Conclusions

To allow existing software to benefit from advances in OO methods, the software should be redesigned and
reimplemented using an OO approach. This work has presented a three-step tool for deriving an OO program from
unstructured, non-OO source code. The tool is a prototype and, although its application shows that it works, its complete
development is a challenging task and some steps need to be enhanced. The resulting program is only a "first-cut" object
representation which should be subsequently improved in order to obtain a more suitable OO model.

Subjectivity is involved in any modeling activity, and any mapping strategy from an imperative system to an OO one
will require user assistance. User participation is sometimes necessary to work up conflicts and supply domain
knowledge so that the resulting objects are more meaningful. The user is also required to assign a meaning name to the
isolated functions.

This tool is an aid that enables the user to make decisions more easily by extracting information from imperative
systems and by limiting the choices the designer would have to make, but it is not a substitute for the developer. Another
benefit of the tool comes from its simplicity. It does not require knowledge of the application domain such as a large
cliché library.

Page 133

Although the use of the prototype in a set of case studies has preserved the functionality, a formal demonstration is still
under analysis. But it can be assured that the extracted objects possess similarity with those objects that might have been
built through an OO design.

Acknowledgments

The authors would like to thank Carlota Rodríguez, María del Carmen Romero, Edith Tejerina, Marcos Moreno and
Ariel Zoia for their contributions to this work.

References

Aho, A. V., Sethi, R. & Ullman, J. D. (1986). Compilers: Principles, techniques and tools. USA: Addison-Wesley
Publishing Company.

Arnold, R. S. (1994). "A road map guide to software reengineering technology." In R. S. Arnold (Ed), Software
reengineering (2nd ed), Los Alamitos, California: IEEE Computer Society Press, 3-22.

Benedusi, P., Ibba, R., Naddei, R. & Natale, D. (1993). "Structure -based clustering of components for software reuse."
Paper presented at the IEEE Conference on Software Maintenance, Montreal, Canad, 210 -215.

Bennett, K. (1995). "Legacy systems: Coping with success." IEEE Software, 12, 19-23.

Beziven, J., Lennon, Y. & Nguyen, C. (1995). "From Cobol to OMT: A reengineering workbench based on semantic
networks." Paper presented at the International Conference TOOLS USA, 137 -152.

Bieman, J. & Ott, L. (1994). "Measuring functional cohesion." IEEE Transactions on Software Engineering , 20, 644-
657.

Binkley, D., Horwitz, S. & Reps, T. (1995). "Program integration for languages with procedure calls." ACM
Transactions on Software Engineering and Methodology, 4, 3-35.

Böhm, C. & Jacopini, G. (1966). "Flow diagrams, Turing machines and languages with only two formation rules."
Communications of the ACM, 9, 366-371.

Burd, E., Munro, M. & Wezeman, C. (1996). "Extracting reusable modules from legacy code: Considering the issues of
module granularity." Paper presented at the IEEE Working Conference on Reverse Engineering, Monterey, California.,
189-196.

Page 134

Bush, E. (1985). "The automatic restructuring of Cobol." Paper presented at the IEEE Conference on Software
Maintenance, 35-41.

Cimitile, A., De Lucia, A. & Munro, M. (1995). "Identifying reusable functions using specification driven program
slicing: A case study." Paper presented at the IEEE International Conference on Software Maintenance, Nice, France,
124-133.

Cobo, H. & Mauco, V. (1996). Un algoritmo para reestructurar programas procedurales. [An algorithm to restructure
imperative programs]. Bogotá, Colombia: Memorias de la XXII Conferencia Latinoamericana de Informática, 979-990.

Cremer, K. (1998). "A tool for supporting the re -design of legacy applications." Paper presented at the IEEE Second
Euromicro Conference on Software Maintenance and Reengineering, Florence, Italy, 142-148.

Chikofsky, E.J. & Cross, J.H. (1994). "Reverse engineering and design recovery: A taxonomy." In R.S. Arnold (Ed),
Software Reengineering (2nd ed), Los Alamitos, California: IEEE Computer Society Press, 55-58..

Ferrante, J., Ottenstein, K. & Warren, J. (1987). "The program dependence graph and its use in optimization." ACM
Transactions on Programming Languages and Systems, 9, 319-349.

Fiutem, R., Tonella, P., Antonio, G. & Merlo, E. (1996). "A cliché-based environment to support architectural reverse
engineering." Paper presented at the IEEE International Conference on Software Maintenance, Monterey, California,
319-328.

Gallagher, K. & Lyle, J. (1991). "Using program slicing in software maintenance." IEEE Transactions on Software
Engineering, 17, 751-813.

George, J. & Carter, B. (1996). "A strategy for mapping from function-oriented software models to OO software
models." ACM Software Engineering Notes, 21, 56-63.

Horwitz, S., Reps, T. & Binkley, D. (1990a). "Interprocedural slicing using dependence graphs." ACM Transactions on
Programming Languages and Systems, 12, 26-60.

Horwitz, S. & Reps, T. (1992b). "The use of program dependence graphs in software engineering." Paper presented at
the IEEE 14th International Conference on Software Engineering.

Jin, Y., Mah, P. & Shin, G. (1997). "Deriving an object model from

Page 135

procedural programs." Paper presented at the 25th International Conference TOOLS Pacific. Australia, 233-241.

Lanubile, G. & Visaggio, G. (1997). "Extracting reusable functions by flow graph-based program slicing." IEEE
Transactions on Software Engineering, 23, 246-259.

Linger, R., Mills, H. & Witt B. (1979). Structured programming: Theory and practice. Cambridge, Mass.: Addison-
Wesley Publishing Company.

Liu, S. & Wilde, N. (1990). "Identifying objects in a conventional procedural language: An example of data design
recovery." Paper presented at the IEEE Conference on Software Maintenance, San Diego, Califirnia. (pp. 266-271)

Livadas, P. & Roy, P. (1992). "Program dependence analysis." Paper presented at the IEEE Conference on Software
Maintenance, 356 -365.

Meyer, B. (1997). OO software construction (2nd ed). New Jersey: Prentice Hall PTR.

Ong, C. & Tsai, W. (1993). "Class and object extraction from imperative code." Journal of OO Programming, 58-68.

Ott, L. & Thuss, J. (1989). "The relationship between slices and module cohesion." Paper presented at the IEEE
International Conference on Software Engineering, 198-204.

Ottenstein, K., & Ottenstein, L. (1984). "The program dependence graph in a software development environment." ACM
SIGPLAN Notices , 19, 177-184.

Pressman, R. S. (1992). Software engineering: A practitioner's approach (3rd ed). Singapore: McGraw Hill
International Editions.

Quilici, A. (1994). "A memory-based approach to recognizing programming plans." Comunications of the ACM, 37, 84-
93.

Rational Software Corporation (1997). The Unified Modeling Language. Version 1. 1. Available:
http://www.rational.com

Rich, C. & Wills, L. (1994). "Recognizing a program's design." In R. S. Arnold (Ed), Software Reengineering (2nd ed),
(pp. 534-541). Los Alamitos, California: IEEE Computer Society Press.

Rugaber, S., Stirewalt, K. & Wills, L. (1995). "Detecting interleaving." Paper presented at the IEEE Working
Conference on Reverse Engineering, Toronto, Canadá, 265-274.

Sneed, H. (1996). "OO COBOL recycling." Paper presented at the

Page 136

IEEE Working Conference on Reverse Engineering, Monterey, California, 169-178.

Subramaniam, G.V. & Byrne, E. J. (1996). "Deriving an object model from legacy Fortran code." Paper presented at the
IEEE International Conference on Software Maintenance, Monterey, California, 3-12.

Waters, R. C. (1994). "Program translation via abstraction and reimplementation." In R. S. Arnold (Ed), Software
Reengineering (2nd ed), Los Alamitos, California: IEEE Computer Society Press, 390-411.

Weiser, M. (1984). "Program slicing." IEEE Transactions on Software Engineering , 10, 352-357.

Page 137

Chapter VIII—
Challenges and Issues to Consider When Upgrading Legacy Applications

Gerold E. Cameron
American University, USA

This chapter will focus on the challenges and issues an organization faces when trying to integrate or migrate their legacy
applications with more advanced client/server information systems. These applications present a challenge when an organization
attempts to integrate its legacy applications with newer technologies due to the rigid binding of the client to the legacy
application server. FAIME, is an object oriented methodology that provides the tools to address application interoperation and
plug-and-play. These tools open closed legacy applications through legacy applications decomposition and produce executable
objects that bridge different operating systems, communication infrastructures, and databases. To convert a COBOL legacy
application to an object-oriented application, a complete restructuring of the legacy program is needed. Objects and their
inheritance structure must be identified, data usage and data flow must be analyzed, and instructions must be allocated to objects.
Dynamic Object Oriented Programming allows parts of an appli-

TE
AM
FL
Y

Team-Fly®

Page 138

cation design that are represented by objects, to be modified dynamically. Integrating or migrating legacy applications with
newer more advanced client/server architectures can be a very expensive and time-consuming undertaking.

Challenges and Issues to Consider

Legacy systems present a fundamental challenge to organizations which use them. These systems, for the most part were
developed by a previous generation of developers, hence, the word Legacy. These applications were designed according
to requirements and an implementation approach that existed earlier in the organization's life cycle. They were then
introduced into computer environments different from those originally planned. Because legacy software systems are so
vital to an organization's continuing existence, they are not retrieved or redesigned without compelling reasons. Major
changes necessitate a significant investment in new technology, with a substantial risk that the new systems may fail to
deliver the required services. Hence, organizations maintain functionality, correct defects, and upgrade legacy systems to
be competitive in today's ever changing business environment (Schneidewind, N. & Ebert, C., 1998).

Integrating Challenges

There are several challenges a organization may face when trying to integrate their legacy applications with information
systems designed to benefit from advanced client/server architectures, graphical user interfaces, and the World Wide
Web (see figure 1). One such challenge is that of the High Level Language Application Programming Interface
(HLLAPI) or the Enhanced High Level Language Application Programming Interface (EHLLAPI). This challenge is
addressed by using Legacy Object Modeling. An enterprise object model maps information stored in industry standard
relational databases to an object representation. A legacy object model maps information from a legacy application to an
object representation in a similar fashion. Many of these legacy applications use a High Level Language Application
Programming Interface (HLLAPI) or Enhanced High Level Language Application Programming Interface (EHLLAPI)
which require a connection with mainframe CICS applications. These applications present a challenge when an
organization attempts to

Page 139

Figure 1.
Legacy applications are being integrated with the existing

client/server systems.

integrate its legacy applications with newer technologies because of the rigid binding of the HLLAPI client to the legacy
application server. Any changes to the host application will result in an unstable client. The legacy object modeling
approach overcomes this limitation by abstracting the legacy application's data and behavior in the form of a collection
of objects (Noffsinger, W.B., Niedbalski, R., & Blanks, M., 1998).

Another such challenge is that of application wrappers. Object oriented wrappers have been presented as a way to enable
legacy applications and object-oriented application to work together. However, object wrappers do not always solve the
interoperability problem for COBOL legacy applications. A legacy COBOL application can be described as procedure-
oriented with maybe several legacy programs working together. The main difference between legacy and object oriented
applications is in their method of operation. Legacy application is a linear block of code with a sequence of PERFORM
and CALL statements, while the object-oriented application is a fluid, data oriented collection of classes. It creates
object instances and directs messages to their methods. A wrapper is a code that provides an interface for one program to
access the functionality of another program. An object that encapsulates a COBOL legacy application, transforming its
functional interface to an object interface is an object oriented wrapper, or object wrapper as it is often called. A
procedural wrapper is a program that reconciles a COBOL legacy application's functional interface to an object
interface. A combination wrapper is,

Page 140

on the other hand, a program that instantiates one or more objects, all of which reconcile a COBOL legacy application
functional interface to an object interface. The Year 2000 problem is easily solved with a procedural wrapper because
the object-oriented program has a corrected number of methods and a small number of shared data items. To convert a
COBOL legacy application to an object-oriented application, a complete restructuring of the legacy program is needed.
Objects and their inheritance structure must be identified, data usage and data flow must be analyzed, and instructions
allocated to objects. Many organizations can not afford the high costs and risks that are associated with this transition
because of limited financial resources. Therefore, interoperable legacy and object-oriented applications are highly
recommended (Flint, E.S., 1997).

OO COBOL is an Object Oriented Language (Arranga, E.C. & Coyle, F.P., 1997). Object Oriented COBOL supports
typed, untyped, dynamic, static, persistent, simple, temporary, factory (class), system and exception objects, as well as
Binary Large Objects (Blobs). OO COBOL has greatly benefited from other OO languages such as Smalltalk, C++, and
Eiffel, but OO COBOL is neither a new concept nor one that has been created because Object Oriented languages are in
style now. OO COBOL has been in development since November 1989 when the Codasyl COBOL committee, OO and
other COBOL experts gathered to discuss how to best objectify COBOL. They concluded that OO COBOL is in many
ways a more powerful and capable object-oriented programming language than many of the other OO languages.
Important characteristics of OO COBOL are:

• Classes, which contain factory and object definitions;

• Factory objects, which contain data and methods;

• Object instances, which contain data and methods;

• Language constructs reuses (for class reuse), interface (to present different hierarchical interfaces), and prototype (for
rapid application development);

• Multiple and single inheritance;

• Polymorphism;

• Automatic garbage collections;

• Data items as objects;

• Complete compatibility with previous COBOL standards;

Page 141

• Named objects that may be retrieved in subsequent application executions;

• A class library;

• Parameterized classes;

• Object handles (as opposed to object pointers) to safeguard encapsulation; and

• Collection classes.

On the practical side, the learning curve for OO COBOL is considerably less than for other OO languages. It takes as
little as 12 weeks to become proficient in OO COBOL programming, in contrast , it takes about 40-plus weeks to learn
Smalltalk and about 80-plus weeks for C++. OO COBOL above all other languages will keep the information systems of
businesses running well into the twenty-first century (Arranga, E.C. & Coyle, F.P., 1997).

Next, is the issue of the relationship of the legacy applications and the businesses they support. Discussions about legacy
systems and data often center around the maintenance of old codes as well as making an existing system survive an
upgrade of hardware, operating system, or database vendor. The important issue with legacy applications is that they are
deeply embedded in the operations of a business. Dynamic Object Oriented Programming allows parts of an application
design as far as it is represented by objects, to be modified dynamically. Integration efforts are often based on an
architecture which dedicates one or more systems to be repositories of extracted legacy data as integrated objects that
reside in an Integrated Object Database (IODB). By creating the legacy data as objects whose definitions are not subject
to change, and by creating the IOB as a dynamic object system whose definition is fluid, data integration issues are able
to be viewed as object mapping. A crucial component of dynamic OOP is its ability to rapidly construct domain specific
languages in order to simplify programming the domain level problem. First, the implementation language is extended in
domain-specific ways. Next, an entirely separate domain specific language is built in order to develop the target
application. The separation of data modeling from data implementation that the use of a domain-specific language
provides is crucial in managing complexity (Robertson, P., 1997).

Additionally, there is the challenge of application interoperability. FAIME, is an object-oriented methodology that
provides the tools to

Page 142

address application interoperation and plug-and-play. The objective of application interoperation is to make two
independently developed applications work with each other. The goal of application plug-and-play is to make an
application interoperate with multiple competing applications that have similar functions. The interoperation problem
can be approached by modeling a legacy application as an object oriented application. These tools open closed legacy
applications through legacy applications decomposition and produce executable objects that bridge different operating
systems, communication infrastructures, and databases. FAIME allows users to focus on the resolution of data semantics
and business processes differences which are the concerns of consequence regarding interoperation. FAIME also
provides tools to overcome accidental obstacles and to capture analysis knowledge for reuse in plug-and-play. It is
designed specifically to accommodate legacy applications and has been successfully implemented in producing
enterprise applications (Chu, B., Long, J., & Matthews, M., 1998).

Furthermore, there is the challenge of reengineering user interfaces using the Abstract User Interface Description
Language (AUIDL). Many legacy systems, especially those in data processing, have a character-based user interface.
Reengineering these interfaces would make them more user friendly and also prolong the life of the systems in which
they are embedded. AUIDL is a language designed to provide an abstract representation of the original character based
interface. Inference converts the character-based, or basic, AUIDL specifications into graphical AUIDL specifications
that use graphical constructs to describe objects, screens, and screen sequences that the user can perceive. Developers
can automatically produce a new graphical interface from the graphical AUIDL specifications using standard code-
generation techniques. Integrating the new interface into the original systems has not proven to be much of a problem
with the use of Easel Corporation's Easel. This is an application that allows one to develop GUIs that run on desktop
computers under Windows, OS/2, or DOS, and also which communicate with IBM mainframe applications through an
Easel 3270 emulator. AUIDL lets the developer represent structure with object orientation's inheritance and describe
behavior with Milner's process algebra. Interface structure captures the possible relations among interface entities while
behav-

Page 143

ior describes the interface dynamic aspects. Although AUIDL and other tools were applied to a specific environment
they are portable (Melro, E., Gagne, P., Girard, J., Kontogiannis, K., Hendren, L., Panangaden, P. & De Mori, R., 1995).

Migration Issues

There are also several migration challenges that an organization will face when it tries to replace its legacy applications
(see figure 2). Some of an organization's mainframes are probably going to be available well into the next century. But
pressure is on to migrate as many of the legacy applications to distributed client/server architectures as possible. Few IT
departments would try a Big Bang conversion of all their applications at the same time. Rather, most IT managers
pursue a more cautious phased-in migration approach. Leading IT managers who have been through this process were
asked to prioritize their applications for migration and their responses are summarized as follows:

• Avoid Big Bang conversions: Practice on small, nonstrategic systems or packaged applications (Dyno Nobel Inc.; Salt
Lake City, UT).

• Begin the major migration process in earnest with customer-related, revenue-generating applications (Jain, S., CTO
Trecom Business Systems; Edison, NJ).

• Concentrate on business functions instead of data (Couperus, J., Senior Consultant Control Data; Minneapolis, MN).

• Don't count on major cost savings: You may be exchanging expensive systems for expensive operations (Reed, D.,
Analyst

Figure 2.
Legacy applications are being migrated into the Client/Server architecture.

Page 144

Texas Instruments; Houston, TX).

• Shoot for major decreases in maintenance and modifications times

• Allow three to five years (Hess, M., Vice President Gartner Group; Stamford, CT).

The most controversial aspect of downsizing is whether it reduces costs. That still remains an issue, but a new study
suggests that the picture may not be as gloomy as many believe. As part of its strategic analysis of the benefits of
migrating to client/server, Texas Instruments consulted a variety of companies that had already made the transition. The
companies included vendors such as Ameritech, Apple, Hewlett-Packard, Intel, Kodak, Motorola, and Sun. Prior to
migrating to client/server, these companies were spending on average 6% of their annual income on computing costs,
including IT. (IT budgets range from 40 to 70% of total computing costs.) After migrating, that figure decreased to 3%
to 4% of revenues, according to Dick Reed, a bench-marking analyst at Texas Instruments. Reed says that, among 10
companies that successfully migrated to client/server, none reported IT cost increases, some realized minor costs
savings, and a few reported significant reductions in IT expenses (Simpson, D., 1995).

Telephone giant GTE faced a migrating challenge when their legacy telecommunications applications was replaced
using Distributed Object Management and Activation for Integrated Networks (DOMAIN). In this approach, one is able
to model all applications in an enriched, CORBA-like Interface Definition Language (IDL). Based on the IDL model,
tools have been developed to generate code automatically for database schema, a server skeleton and major portions of
the graphical user interface. HTML and Java Script were chosen as the main languages for implementing the domain
user interface because they make it easy to develop prototypes and produce computer-generated screens based on the
model definition. The legacy system was treated as a black box and only its network and core business processes were
studied. One of the most significant obstacles to successful system implementation is the user's reluctance to change. To
lessen this problem a site was chosen with fewer systems and smaller user and customer bases for the first installation.
Migration of the legacy data was accomplished through the use of the DOMAIN Object Definition Language (ODL)
files that conform to the metadata

Page 145

extracted from IDL. Next, Informix High Performance Loader (HPL) files are generated from the ODL files and loaded
into the database. This method allowed the migration of 10 million objects (75 million database records) in three months
during live operations. Domain successfully replaced the largest GTE legacy system in less than 18 months by bringing
together people, software, and hardware combined with advanced software techniques with practical solutions to achieve
a common goal shared by user, developers, and managers (Bollig, S. & Xiao, D., 1998).

Another issue is that of reengineering object-oriented legacy applications. The object oriented reengineering lifecycle
consists of five general phases:

• Model capture: documenting and understanding the design of a legacy system.

• Problem detection: identifying violations of flexibility and quality criteria.

• Problem analysis: selecting a software structure that solves a design defect.

• Reorganization: selecting the optima; transformation of the legacy system.

• Change propagation: ensuring the transition between different versions.

Prior to reengineering a legacy system, it is necessary to understand its architecture and the relationships between its
components. Model capture often presents a major hurdle and is the domain of choice for the application of browsers
and reverse-engineering tools. Finding flexibility problems in legacy systems requires not only a specification of the
criteria that the new, reengineered software must fulfill, but also a definition of the differences in these criteria. When
possible defects in the legacy system are found, developers must analyze them, compare them with problems about
unmet requirements, and understand how they affect the software. The reorganization stage consists of determining and
applying the proper combination of operations to transform the legacy system to the target structures chosen during
problem analysis. Change propagation is made by establishing the revised system throughout a corporate software
environment, especially by mapping persistent objects to the new

Page 146

software structures. To ensure the continuity of the process, the results of the reengineering project must be documented.
The reorganization of object oriented legacy applications does not differ markedly from more traditional reengineering
concerns excepts for two noticeable characteristics:

1. The same basic technology that was used in the legacy software is applied in the target software but extended with
advanced design concepts, such as frameworks. On the other hand, traditional reengineering aims dictate, at salvaging
applications written in PL/1 and using hierarchical databases in a completely different environment based on Delphi and
the World Wide Web.

2. Several iterations of reengineering might be needed before achieving a system with a desired degree of generality and
adaptability. Object oriented reengineering is, therefore, largely a generalization process (Casais, E., 1998).

Migrating legacy systems towards object oriented platform can also be achieved by using design metrics (Cimitile, A.,
De Lucia, A., Di Luca, G.A., & Fasolino, A.R., 1999). The decomposition of a legacy system is the beginning for an
incremental migration strategy: each object can be re-implemented independently using new object oriented
technologies; old components can be used in their original form until the new equivalent objects show an acceptable
level of reliability. Identifying objects in legacy systems is a particular case of the problem in clustering system
components into modules (Canfora, G., Cimitile, A. & Muaro, M., 1993). The legacy systems are first decomposed into
objects. Then the identification of objects begin centered around persistent data stores, such as files or tables in the
database, while program and routines are candidates for implementing the object methods.

The next step is the association of the methods to the objects, which is accomplished by optimizing selected object-
oriented design metrics (Chidamber, S. R. & Kemerer, C.F. 1994). In particular, it is done while trying to minimize the
coupling between the objects. This decision was developed to avoid object-oriented decomposition of a legacy system
from being detrimental to the design, requiring subsequent maintenance of the reengineered system. This approach was
applied to a complex large system of the health service department of a municipality. The system analyzed had evolved
over the past twenty

Page 147

years to support particular needs of managing pharmaceutical products. The study is still in progress, but analysis of the
persistent data stores and identification of the potential objects have already been conducted along with the association
of methods to data stores at the program level. The system studied runs on a mainframe, with the TP monitor CICS from
IBM, two types of DBMS, hierarchical (IMS) and relational (DB2), and a proprietary industrial macro-set. The system is
composed of 799 COBOL and 2 ASSEMBLER programs (about 40.5 MB, 550KLOC), 260 copybooks (about 1.3MB,
16 KLOC), 339 screen maps (about 4.5 MB, 100 KLOC), 275 files PSB (about 900 MB, 16 KLOC). The external
functions of the system are controlled by 93 JCL jobs. An early analysis of the source code and the scarce available
documentation indicated that the system had been historically developed from the hierarchical database IMS, which was
the only database having data defining the objects of the application domain. At the time, relational database tables were
not studied because only about 74 programs had embedded SQL code. Report generation is produced in COBOL by
exporting the relevant data from the IMS database to VSAM files. These files were analyzed to identify data stores
corresponding to the application domain objects. The files were then associated to segments of the IMS database using
synonym and homonym analysis. As a result, 294 logical files, 310 physical files, and 76 IMS segments were identified
and reduced to 143 data stores after the resolution of synonyms and the elimination of printer files (Cimitile, A., De
Lucia, A., Di Luca, G.A., & Fasolino, A.R., 1999). This noticeable decrease was due to a large number of printer files
and synonyms, which resulted from exporting the same IMS database segments into different files. Identification of the
object methods was done using the same weights and the same threshold value as in the first pilot project. The
association of interactive programs to the corresponding objects was immediate, due to fact that these programs utilized
simple data input or updating operations, and in most cases benefited from predominant access to the corresponding data
stores. In contrast, the percentage of programs with exclusive or predominant access were very low for programs
containing embedded SQL code. This is mainly due to two factors: 1. The models of the data of the two databases
(relational and hierarchical) are very different and, therefore, there was no correspondence between the relational tables
and segments of

TE
AM
FL
Y

Team-Fly®

Page 148

the hierarchical database; 2. And the same program imports/exports conceptually non-homogenous data (Cimitile, A.,
De Lucia, A., Di Luca, G.A., & Fasolino, A.R., 1999). The next step in this pilot project will be the application of
dominance analysis to the approximately 450 programs.

Discussion

The challenges or issues that one might come across when integrating or migrating legacy applications with newer more
advanced client/server architectures can be a very expensive and time-consuming undertaking. Should one reengineer
the organization to fit its new client/server applications or use objects and components to custom build the applications
necessary for the enterprise? Based upon this research, I do not suggest the integration legacy applications with an
organization's current information systems unless all other possibilities have been exhausted. If your legacy systems still
enable your organization to remain competitive, and you are also able to expand, it is recommended to leave these
applications in place. On the other hand, if the enterprise needs to become more competitive, it might consider focusing
internally first on reengineering the business processes and work flows that are part of the legacy applications. I recently
witnessed first hand DB-2 legacy applications being replaced with a newer Unix based client/server application named
Colleague at the American University. The old legacy system no longer met the needs and objectives of the university.
The migration process consisted of four phases. First, the Benefactor system was put in operation in 1998, then the
General Ledger system, next the Student system, and finally the Human Resources system. The implementation for the
entire system took about eight to ten months to complete. The Colleague interface is a Windows- based graphical user
interface. Planning information and costs figures were not available for this discussion since the system so far has not
delivered as anticipated. There are numerous bugs that were expected, being discovered on a daily basis with no
immediate fix. It is sometimes very frustrating, because I am responsible for overseeing the process of capturing the
information and images for graduate and undergraduate admissions and financial aid materials submitted to the Office
Enrollment Services for review. It appears that the decision of whether to keep the DB-2 legacy system

Page 149

was not well thought out. It also appears that the guidelines as prescribed in the literature and in practice regarding
implementing new information systems were not followed or ignored. Even if object oriented technology was used to
replace the legacy system it might still run into problems because the implementation process as recommended in the
industry and literature applies also to OO technology.

References

Arranga, E.C. & Coyle, F.P. (1997, March) Cobol: Perception and Reality. Computer, 30 126-128.

Bollig, S. & Xiao, D. (1998, June). Throwing off the shackles of a legacy system. Computer, 31 (6), 104-109.

Canfora, G., Cimitile, A. & Munro, M. (1993). A reverse engineering method for identifying reusable abstract data
types. In: Proceedings of the first IEEE Working Conference on Reverse Engineering, Baltimore, Maryland, IEEE
Computer Soc. Press, (Silver Sand, MD) 73-82.

Casais, E. (1998, January). Re-engineering object-oriented legacy systems. Journal of Object Oriented Programming,
10 (8), 45-52.

Chidamber, S. R. & Kemerer, C.F. (1994). A metrics suite for object oriented design. IEEE Transactions on Software
Engineering, 20 (6), 476-493.

Chu, B., Long, J., & Matthews, M. (1998, September). FAIME: an object-oriented methodology for applications plug
and play. Journal of Object Oriented Programming, 11, (5), 20-26.

(Cimitile, A., De Lucia, A., Di Luca, G.A., & Fasolino, A.R. (1999, January). Identifying objects in legacy systems
using design metrics. Journal of Systems and Software , 44 (3), 199 -211

Flint, E.S. (1997). The COBOL jigsaw puzzle: fitting object-oriented and legacy applications together. IBM Systems
Journal, 36 (1), 49-65.

Melro, E., Gagne, P., Girard, J., Kontogiannis, K., Hendren, L., Panangaden, P. & De Mori, R. (1995, January).
Reengineering User Interfaces. IEEE Software, 12 64-73.

Noffsinger, W.B., Niedbalski, R., & Blanks, M. (1998, December). Legacy object modeling speeds software integration.
Communications of the ACM, 41 (12), 80 -89.

Robertson, P. (1997, May). Integrating legacy systems with modern corporate applications. Communications of the
ACM, 40 (5), 39-46.

Page 150

Chapter IX—
Understanding Distributed Object Oriented Systems

Alex Podaras
Hewlett Packard, USA

Distributed objects , as applied to the term distributed object oriented systems, can be defined as those objects that have
many locations on a system (network), but stemming from the way they interact with one another, appear to be coming
from just one location (Taylor, 1996, p. 263). Obviously, this presents distributed-object oriented systems with design
complexities because the hardware and software are not located in one place but, to the user, must look as though they
are. These complexities can be well appreciated by looking at the literature. Montlick (1999) uses the very term complex
in a chapter heading related to distributed object oriented systems. He attributes this building complexity to the fact that
object oriented technology is in its infancy. Given that distributed object oriented systems are complex and in their
infancy, it is hard to decipher a clear definition of distributed object oriented systems and the client/server (frontline
computer/back-line computer) model or environment. Some such as Berson (1996) say that client/server computing is a
form of distributed computing, while others such as Taylor (1996) say that client/server computing is different from
distributed computing. Understanding the client/server environment adds to the complexity of understanding distributed
object oriented systems.

The purpose of this chapter, then, is to provide an understanding of what distributed object oriented systems are, no
matter how complex they may appear to be. To provide a foundation for this under-

Page 151

standing, the ''building block" evolutionary process leading to the development of distributed object oriented systems
will be given first. To foster an understanding of the systems themselves, it will be shown that no matter how complex,
for a system to be distributed object oriented, basically several key ingredients must be in place. Accordingly, it will be
shown that, fundamentally, distributed object oriented systems must have two object oriented properties or
characteristics: encapsulation (the ability to hide code from the user) and messages (the way objects communicate).
Additionally, it will be shown that software components (objects) of the distributed object oriented systems must have
certain inherent features. Aside from the two object oriented properties and the certain inherent features, any critical
system must have the ability to keep its data in a consistent state. This is particularly important when concurrent (at the
same time) transactions (a unit of work) are executed.

It was determined that because distributed object oriented systems are complex and in their infancy, in order to produce
a basic definition and understanding of what they are, it would be necessary to analyze a cross-section of the current
literature: i.e., information found in books, articles, journals, and Internet sources as well as information obtained from
interviews with an IT expert.

What We Already Know

Evolution:
Host-Based Environment to Object Oriented Model

As was mentioned in the above text, there are at least two ways of defining a client/server model (structural design) or
environment (surroundings). One way is to say that distributed computing and client/server are the same (Berson); the
other is that they are two separate entities (Taylor). For the purpose of obtaining a clear definition and understanding of
distributed object oriented systems, Berson's (1996) client/server rationale is used in this section.

Host-Based Model

In the host-based environment there is one processing computer (host) with several "dumb" terminals attached to it.
"Dumb" terminals do not have the ability to process application components, which are application fragments; they are
only used to communicate with the host and display output to the user. Application components in

Page 152

Figure 1.
Host-Based

turn make up an application.

In a host-based environment, the main computer or the host computer does all the application processing for the system.
The application resides only on the host. The output is then displayed on "dumb" terminals or compiled in a pre-
formatted report and routed to a host-based printer. In the host-based model the host computer is a mainframe.
Typically, these host computers were large IBM mainframes (see Figure 1).

When the host-based model first came out it was referred to as a client/server environment. The "dumb" terminals were
the clients and the server was the mainframe. Some IT professionals will claim that host-based computing is a
client/server environment but most will argue that a client/server environment does not mean host-based. Originally, the
clients did not do any of the processing; they were just "dumb" terminals. Today, clients must do part of the application
processing (along with other measures which will be mentioned in a later subsection) to be considered a client/server
environment, although the application processing is not necessarily evenly dispersed. The current meaning of a
client/server model will also be discussed in a later subsection.

Master-Slave Model

The next model to evolve from the host-based model was master-slave. In a master-slave model, there is one computer
(master) with additional computers (slaves) attached to it. These slave computers can do some limited local processing
as directed by the master computer. In other words, the master computer dictates to the slave computers what application
processing to perform but the applica -

Page 153

tion processing is unidirectional (master to slave). The application processing is distributed, unlike in the host-based
environment. Webster's Dictionary defines distributed as divide among many. The application processing is divided
across the system; the slave does limited local application processing as directed by the master. An important part of
distribution is cooperation among the computers. The computers can not be performing independent tasks to be
considered distributed.

In a master-slave model, the application resides only on the master computer, just like the host-based environment. Even
though the slave is doing some limited local application processing, the actual application processing is distributed, not
the application. Typically, these master computers were large IBM mainframes. A slave computer was typically a
smaller mainframe or minicomputer such as an IBM System 36 or Digital Equipment Corporation VAX. A process that
could have been performed in this environment would have been data entry from "dumb" terminals accessing the slave
computer, which performs data editing, formatting and batch uploading to the master computer. The master computer
would then perform other operations such as additional editing, database updating and execution of specific programs as
requested. Intelligent terminals can act like "dumb" terminals to access the application on the master computer or be
disconnected from the system and flipped into stand-alone PCs to do such things as word processing or spreadsheets. As
technology developed, replacing ''dumb" terminals with intelligent terminals became more and more of a viable option
than was using dumb terminals (see Figure 2).

Shared-Device Model

The next model to evolve from the master-slave model was shared-device. In a shared-device model, the PCs - not yet
true clients - share resources such as files or a printer via a local are network (LAN). These resources are located on a
server's (device) disk drive, which is attached to the PCs. File servers can be thought of as back -line computers that
receive requests. The PCs do all of the application processing and the server only does shared-file or print processing.
The application resides only on the PCs.

Shared-device environments were a significant step for a fully

Page 154

Figure 2.
Master-Slave

transparent distributed environment. In a shared-device environment, the user does not know where the file is located on
the system; the file could be local and reside on the PC, or remote. If the file is remote and located on the file server,
then the file is shared by the PCs (see Figure 3).

As these shared-device environments grew into WANs (wide area network), so did the number of PCs and servers on a
system. And just as a natural progression, their power grew as well. These systems were becoming client/sever
environments in which the PCs or rather workstations, as they became to be called because of their increased power,
were becoming clients of the servers. Clients can be thought of as frontline computers that make requests to the server.
Servers started to handle more than just file and print requests from clients. The application and its processing were
being divided among or distributed between the client and server. Part of the application components reside on the client
and server, although not necessarily evenly. The client and server are cooperating together to process the application but
not unidirectional, like the master-slave model (see Figure 4). However, problems evolved with the management of the
clients. The difficulty of managing clients was inherent in the design of client/server applications and led to the
evolution of "thin-client" applications, which were much easier to deploy and manage. For

Page 155

Figure 3.
Shared-Device

Figure 4.
Client/Server

Page 156

example, every time the application was upgraded, it had to be upgraded for all of the clients. It also became more
efficient to distribute the application and its processing, along with the data that composes files to better utilize various
computing resources. Distribution of the application processing could lessen such things as system bottlenecking on the
network.

This client/server distribution of the application is typically divided into presentation logic, application logic, data
manipulation logic and the database management system. Presentation logic handles how the information is going to be
displayed on the user's terminal or computer screen— for example, text, graphs, dialog boxes and so fourth. In other
words, it is the part of the application code that interacts with the user's terminal or computer screen. Application logic
implements business policies from inputted data (from pointing devices such as a mouse or keyboard and/or a database).
In other words, application logic is the part of the application code that decides what to do in various situations by using
if, then and else deduction . Application logic is also referred to as business logic. They are the same. Data manipulation
logic is the part of the application code that manipulates the data within the application by using SQL (structured query
language). The database management system (DBMS) does the actual processing of the database data.

The only difference between the client/server application components and the other models' (mentioned in the above
text) application components is the data manipulation logic. Specific data manipulation/retrieval logic was proprietary,
such as that used by ADABAS, MODEL 204, FOCUS and other non -relational DBMS or data retrieval software.

Multitiered Client/Server Model

When the client/server model was first developed, it was only two tiered. In other words, clients made requests to
servers and that was it. Today, a client/server model can be multitiered. This means that servers are clients too. For
example, a mid level manager in a corporation is a server to his or her subordinates and at the same time is a client to his
or her boss. This is an example of a three tiered system. However, this concept could be extended to include several
other layers of managers. Therefore, a multitiered client/server model is more than two tiers (see Figure 5). Additionally,
the mulitiered client/

Page 157

Figure 5.
Multitiered

server model can support different LAN or WAN topologies or configurations.

Client/Server Measures

In order to have a tiered or multitiered client/server model, several measures must be in place. First, there must be
cooperative processing between the client and server. Second, the processing must be distributed between the client and
server. Third, it must be an open system: the client/server model must allow for growth (scalability); must provide the
ability for the client/server systems to talk to one another (interoperability); and must allow the application to run on any
hardware platform (portability). Additionally, standards must be in place. Today, the client/server model is still
evolving. The client/server model is now starting to incorporate distributed objects.

Object Oriented Properties

Encapsulation

Encapsulation is the process of hiding the internal code or data of an object's implementation (Taylor, 1996, p. 52).
Access to the code is through a defined interface, such as a command box. For example, a command box in Visual Basic
(an object oriented programming language) that says, "Calculate 2 Multiplied by 2" and displays the results in a text box
is an example of encapsulation. The code is hiddenTE

AM
FL
Y

Team-Fly®

Page 158

Figure 6.
Encapsulation

underneath the command box. The user only sees the box with the caption "Calculate 2 Multiplied by 2," not the code
(see Figure 6).

Perhaps a simpler example of encapsulation would be to consider an actual calculator. If a user wants to multiple 2 times
2, first he/she presses the 2 button followed by the times button. Then he/she presses the 2 button again, followed by the
equal sign. At this juncture, all the user sees is the answer 4, in a small glass display area. The user can not see into the
calculator to see how the operation was actually executed. Plastic is covering the circuitry that performs this operation.
The actual execution of the operation is encapsulated in the calculator, just as the programming code is encapsulated in
an entity or object like the command box in Figure 6 above.

As Lowe (1997) states, an advantage of encapsulation is that it provided the first opportunity for software programmers
to reuse code. Encapsulation made it possible for software programmers to stop reinventing the wheel. Code that has
already been coded and tested once in a program can be used again in another program.

However, as Garber (1998) notes, some people believe that reusable code, which is encapsulated or hidden in software
components, has not lived up to its potential. Encapsulated reusable code (it can also be original code) is or can be in any
software component or object, just like the command box in Figure 6 above. Some software developers believe that
reusing code is neither practical nor cost effective. Others are concerned that code can be used that was actually
developed by someone else. And still other developers simply believe that code should be built from scratch.

According to Garber (1998), three main infrastructure elements for software components can ease the concern over
reusing code. First, there must be a uniform design notation for the software components.

Page 159

This would allow for reusable software components to have the same functions and properties as other code that is
encapsulated into it. Secondly, there must be a standardized interface. If a standardized interface is not used, it is like
trying to run a Microsoft program on a Macintosh machine. Thirdly, there must be a library of reusable software
components that describe their features or what they can be used for. Other aspects of software components, not
including encapsulation, will be discussed in a later section.

Messages

Before messages can be discussed, methods must be examined. A method returns a value from a set of instructions. As
Rob and Coronel (1997) explain, a method can also be thought of as a procedure or subroutine. The procedure is an
object. A method has a body and name. Each method is defined by a name. For example, the body of a method
calculates the average salary earned per day, for two months of work, with an equal amount of days (31) in each month
and a total of 62 days for two months. The method is named XAM (Average Amount of Money). In this method XMA =
total_salary_for_two_months/62 and returns the worker's average salary earned per day. Total_salary_for_two_months
is an attribute. An attribute is a data value of an object. For example, a data value for total_salary_for_two_months could
be sixty-two dollars.

In this example and all other cases, to invoke the method a message is sent to the object. Messages are the way objects
communicate to each other to carry out an activity (Taylor, 1996, p. 49). As Page-Jones (1995) notes, in order to send a
message, three things must be known. First, in order to send a message an object must know which object to send the
message to. It is like sending an envelope; an address is needed for the mailman to send the letter. Second, the method to
be executed must have a name. In this case, Object 2. Third, any parameters or arguments must be specified. Parameters
are the actual returned values of the object. In the average salary earned per day example, the parameter would be one
dollar if the total salary for two months was sixty -two dollars (62 dollars/62 days = 1 dollar earned per day) (see Figure
7).

Perhaps another example will further illustrate this point. Suppose two people (A and B) are each holding an end of a
string to which they have tied a can. The two cans and the string represent the system.

Page 160

Figure 7.
Messages

Person A, talking to person B, is located in a different place than B. They (A and B) represent distributed entities or
objects. Person A is talking through one of the cans and person B is listening to person A through the other can. Person
A tells person B to add 2 plus 2 and send the message back. As person A is speaking, he is invoking the message to
person B. Since the two cans are connected to each other, person A knows whom to send the message to and the person
or object's name -B. Next, person B performs a set of instructions to obtain the answer (4). These instructions or methods
are to take 2 plus 2 and add them together. After person B obtains the answer, person B sends the answer (4) back to
person B. The answer (4) represents the parameter.

Before leaving this section it should be noted that object oriented or rational database management systems (RDBMS),
such as Oracle, have objects but differ from distributed object oriented systems in a few ways. For one, they do not have
messages. Therefore, objects cannot communicate with one another to carry out an activity, such as person A and B did
in the above example. Secondly, they do not have encapsulation. Looking at the code in a RDBMS is like looking at
code on a piece of paper. The code is not hidden like in distributed object oriented systems.

An object in a RDBMS can be a trigger. A trigger is a set of instructions that initiates an event. For example a system
shuts down when the office is closed for a holiday.

Software Components (Objects)

A few points will be reiterated before talking about software components. As mentioned above, objects are procedures
and so are software components. Software components in turn can or cannot be

Page 161

procedures in which the code is encapsulated. A note though, these are not the only possible objects a program can have.
For example, a form in Visual Basic is an object as well. As long as the object is an abstract description of a real-world
entity with a unique identity (embedded properties) and can interact with itself and other objects, it is an object (Rob and
Coronel, 1997, p. 548). Since Lowe (1997) contends that software components must have four features, a discussion of
each of these follows.

Software Components Work Well Together

Objects are independent of other objects but can work together, such as the calculate button or procedure in Figure 6.
When one object of the application is being used, another object can be "sleeping" or inactive. There also must be
platform independence to truly be an open system. In other words, distributed objects do not care what computer
architecture (structural design) or operating system is being used. The end result will be the same.

Software Components Transparently Downloaded Themselves

When a user requests a distributed object from the network, it is automatically located on a server. Also, the object is
transparently downloaded to the user's computer (the client), except for the time delay that occurs as the object is being
downloaded to the user's computer.

Software Components Will Not Damage Anything

Users must feel secure that distributed objects will not steal their credit cards or damage their hard disks. Security
becomes important but it is not a deterrent from having distributed object oriented systems. To minimize this from
happening, special software certificates are used to authenticate the object.

Software Components Are Dwarf

Distributed objects must not take too long to download. Users do not mind waiting 30 to 40 seconds but they will not
tolerate 5 to 10 minutes.

Transactions

As Montlick (1998) notes, any critical system must have the ability to keep its data in a consistent state. This is
particularly important

Page 162

when concurrent (at the same time) transactions (a unit of work) are executed. Transactions solve two problems. The
first problem that they solve is concurrency. For example, say that two users (Stan and Laura) are using an object
oriented system to add a row of data to a field or column in a database. Lets assume that the presentation logic is on the
client and the rest of the application components on the server. Also, assume that both users want to decrease total
inventory. Stan wants to decrease the current inventory (200 units) by 100 units and Laura by 50 units. Both access the
row at the same exact time. Initially, both see the same data on their computer screens. However, Stan finishes the
update first. His update will be lost and Laura's update will be committed to database. This is because his update
superseded the first user's update, or as it is in this example, Laura's update. This is known as race condition. The
current inventory would read incorrectly 150 units. If Laura finished first, her update would be lost. In this case, the
current inventory would read incorrectly 100 units. Either way the update is wrong. The inventory should reflect a
change of 150 units and read 50 units as the current inventory count. If the inventory was 50 units, then the data would
be in a consistent state.

Transactions solve this race condition problem by using locks. To keep the data in a consistent state, during current
transactions, locks are used. Locks prevent more than one person from accessing a row at the same time. After the
transaction is completed, the lock is released (Lowe, 1997, p. 266).

As Montlick (1999) explains, the second problem that transactions solve is a fail condition. Say for example, that Stan
and Laura want to add a row to a database, but this time there are two copies of the database on the object oriented
system. These database copies are located in two different buildings. Let us also assume that the presentation logic is on
both of the clients, and the rest of the components are on the two servers. There are then two copies of the database on
each of the servers. One is in New York and one is in Maryland. Stan, who is located in New York, updates his
inventory on the database through a client. This time, the database in Maryland is updated as well. Later on Laura, who
is located in Maryland, updates her inventory on the Maryland database through a client. This time though, the database
in New York is not updated. Consequently, the databases' data and the system are not consistent, for they both should
read the same inven-

Page 163

tory (i.e., 50 units each).

Transactions solve this race condition problem by making sure that the whole update is fully completed. This keeps the
data in a consistent state. In the above example, when Laura updated the Maryland database and the New York database
was not updated, the whole transaction would have failed.

Findings

What Distributed Systems Are Missing

Today, there are standards available for distributed object oriented systems, such as COBRA, ActiveX and OpenDoc.
Each has its advantages and disadvantages. These standards keep track of the objects and route or direct requests to the
correct object on the system (Lowe, 1997, p. 260). However, there are no strategies available for implementing
distributed object oriented systems. For example, two people meet in the streets of Spain. Half of the people there,
including residents and visitors to the country, speak Spanish, while the other half speaks English. Upon meeting each
other, if theses two people shake hands, it is understood that they want to speak English. They are agreeing on a standard
way of speaking to one another. Computers work the same way, a standard is needed for them to communicate with each
other. The standard could be CORBA, ActiveX or OpenDoc. CORBA has a different standard for distributed object
oriented systems than ActiveX or OpenDoc. However, the problem is not with setting up a standard or way of
communicating with one another but rather with implementing a strategy to distribute the objects. For example, the two
people meet and one is a resident of Spain, while the other is a visitor. The visitor had asked the concierge for directions
to a particular restaurant but decided to ask someone else too, just after he left the hotel. When the visitor discovered that
he and the person he just met both spoke English, he asked the man for directions and the man gave them to him. The
visitor then realized that both sets of directions were different but that they both got him to the correct place. The same is
true for distributed object oriented systems; there is no agreed strategy for implementing distributing object oriented
systems, just like there was no agreed upon way of getting to the restaurant, as seen in the different (but accurate)
directions given by the concierge and the Spanish resident.

Page 164

Where Are Distributed Object Oriented Systems Going

If you look at where things are going, there will be a trend away from ''proprietary clients" such as a PowerBuilder client
accessing an Oracle database, replaced by browser-based clients that can be accessed in the office/at home/on the road
easily and uniformly via the Internet. Companies are designing custom portals (think of a Yahoo or Web like main menu
for corporate information available to its employees) for employees to access a wide variety of corporate data stored in
data warehouses. A data warehouse is similar to a very large database that stores data for 5 - 10 years. Management of
this architecture is centralized, but access is simple and ubiquitous. All you need is access to an ISP (Internet Service
Provider) and a browser installed on your PC. Obviously, security would have to be a major concern (IP authentication
processes), but this is not a showstopper. E-mail is evolving using this model and applications are following suit (B.
Messina, personal communication, March 15, 1999).

This new model has 5 layers instead of 7. What is happening is that the Internet is allowing for this relatively new 5-
layer OSI (Open Systems Connection) model, which was adapted from the 7-layer OSI model, to take advantage of the
Internet. By using the Internet to connect PCs together, two of the layers are no longer needed. You should notice two
things about this model. One, it is a client/server model. Two, it also meets the client/server measures as noted in that
section.

Conclusion

There will never be an agreed upon definition or understanding of distributed object oriented systems. You can go
through numerous books and find several definitions of the same thing, such as the many different definitions of
client/server. Finding an agreed upon definition or understanding of distributed object oriented systems will not get any
easier as the technology develops but keeping abreast of different definitions will help. The trick is to break things down
into their smaller parts and go from there. Having done that with regard to distributed object oriented systems, this
chapter should help someone get a better definition and understanding of distributed object oriented systems.

Page 165

References

Berson, A. (1996). Client/server architecture. New York: McGraw-Hill.

Berson, A., & Smith, S. J. (1997). Data warehousing, data mining, & OLAP. New York: McGraw-Hill.

Kiely, D. (1998, February). Are components the future of software? IEEE, pp. 10-11.

Lowe, D. (1997). Client/server computing for dummies. Foster City: IDG Books Worldwide, Inc.

Montlick, T. (1999). The distributed smalltalk survival guide. Cambridge: Cambridge University Press.

Page-Jones, M. (1995). What every programmer should know about object oriented design. New York: Dorset House.

Purao, S., Jain, H., & Nazareth, D. (1998). A comprehensive approach to effective distribution of object oriented
systems in loosely coupled networks [On -line]. Available: http://www.cis.gsu.edu/~spurano/research/oodistcs.html

Purao, S., Jain, H., & Nazareth, D. (1998). Effective distribution of object oriented applications. Communications of the
ACM, 41,100-108.

Rob, P., & Coronel, C. (1997). Database systems design, implementation and management. Cambridge: Course
Technology.

Singer, G. (1996). Object technology strategies and tactics . New York: SIGS Books &
Multimedia.

Page 166

Chapter X—
Distributed Object Business Engineering:
Digital Legos for the Enterprise

David H. Patton
USWeb/CKS Corporation, USA

Tomorrow's business environment will make it increasingly difficult for businesses to operate efficiently. To gain the needed edge,
in the global economy, many businesses are looking towards information technology. By utilizing technology as a conduit,
companies are able to leverage their greatest asset: their internal knowledge base. This chapter presents a framework for
architecting enterprise-wide object based information systems. These next-generation systems maximize information value
throughout the enterprise, while reducing development time and effort throughout the system lifetime. By presenting a complex
concept in a pragmatic fashion this chapter should provide benefit for both information architects and business managers.

Distributed Object Business Engineering:
Designing Enterprise Information Portals for Tomorrow's Business

Information is power. Yet this mantra of the next-century paradoxically poses a statement and a question. In the coming
age data, information and the knowledge derived from it equate to real-world power just as traditional forms of capital
equated to power in the industrial age.

Page 167

This study seeks to introduce and define a theoretical model describing a new approach to information age enterprise
computing in the global marketplace. The implications of this study are that they provide business a new approach to
process engineering offering the enterprise a strategic edge in decision making at all levels.

Decision-making theory, specifically the rational actor model , assumes decisions are made based on the availability of
all current, timely, and relevant information available. The goal of information systems is to provide an infrastructure
that acts as a repository for data and to provide a mechanism for the extraction and transformation of this data to
information. However, the rapid increase in the pace of business has placed increased pressure upon the enterprise to
make decisions more quickly in order to remain competitive.

This study is based on a survey of current literature and the authors observation within academia and industry
incorporating current theories and models from object oriented technology, client/server computing, and business
process engineering. The study seeks to provide some background on the characteristics of the emerging business
environment, as well as past and contemporary information system theory as a starting point for defining the new
business environment and a new model of Distributed Object Business Engineering.

Discussion

Business in the next century will be remarkably different from the manner in which it is currently conducted. In recent
years, there have been two separate but parallel revolutions within business and technology that are impacting the
business landscape of today (Fingar & Strikeleather 1996).

Business

• New organizational structures - New structures are reshaping businesses from the traditional hierarchical models to
flatter, more networked organizational models. The results of this are smaller organizations with fewer layers between
the top and the bottom, thereby decreasing the reaction time of the organization as a whole. The networked structures
disregard traditional "chain of command" structures by establishing interoperating teams that work together on specific
projects. Each team is self-suffi-

TE
AM
FL
Y

Team-Fly®

Page 168

cient with regards to mission goals, with the overall organization providing administrative support.

• Globalization of business - The last twenty years have seen a boom in the number of companies conducting global
operations. This trend was accelerated by the widespread adoption of the Internet and is sure to continue. Traditional
business hours are a thing of the past in the new global marketplace. Business must adapt to conducting business 24
hours a day, seven days a week. In addition, business must adapt its products and services to fit language, economic,
regulatory, and cultural differences.

• Market capitalization - Within the last five years, small-time individual investors have become a dominant player in the
stock market. As the number of individuals continues to grow, market capitalization of many high profile, some say
overexposed, companies will continue to swell. Case in point, the market capitalization of Microsoft stands at $380
billion, while the market capitalization of the remainder of a well -known Internet stock index (ISDEX) stands at 95% of
Microsoft's valuation (Harmon, 1999).

• Restructuring of distribution channels - Traditionally goods and services were put to market through well-defined
distribution channels. These channels were comprised of one or more middle -men who would each increase the total
cost in return for some kind of "value -added" service. A recent trend within the business world is to reduce the overall
length of distribution channels or to eliminate them altogether and sell directly to consumers. This is called
disintermediation.

Technology

• The desktop computer - The introduction of the desktop or personal computer revolutionized business and the world,
allowing people to work faster, smarter and more efficiently. But the PC also facilitated other more subtle changes that
are currently taking place.

• Graphical user interfaces - Back in the dark ages of computing users were relegated to performing work on a computer
through a command line interface such as DOS. In the 1980s, Apple introduced the Macintosh computer. The Macintosh
was the first consumer level computer that offered the graphical user interface

Page 169

or GUI. A GUI allowed users to interact with their machines through the use of easy to understand icons and drop-down
menus for performing tasks. No longer did you have to remember specific syntax to perform actions such as copying or
moving a file.

• Advanced network infrastructures (LAN's, WAN's, Internet) - Networked computing has been a major force in the
widespread adoption of computers in business. Networking allows users to share data and common system resources
such as disks and printers. In the past installation of a network was a time-consuming, expensive endeavor with a steep
learning curve. Added to this problem was the number of proprietary protocols and products available. The introduction
of the Internet with its standardized protocol (TCP/IP) has overcome many of these barriers, allowing every business and
many individuals to build and operate their own local area networks. These LAN's are interconnected either through
proprietary networks called wide area networks (WAN's) or to the Internet, the granddaddy of all WAN's.

• Client/Server computing - The advent of the network required system designers to develop an underlying architecture
that defined the relationship between a server and its client machines. Initially designs were based on a simple terminal-
to-host model, where multiple dumb terminals connected to a massive server (usually a mainframe) on a time-sharing
basis. This type of architecture is called a two-tier model. To offset the high maintenance required of these systems the
three-tiered model was introduced. This model inserts an additional layer between the client and the server to handle
business logic, rules, and data access. This middle tier is a logical layer, and does not require the addition of hardware
for implementation (Clarke, Bowman & Strikeleather, 1996). Examples of a three-tiered system are most LAN's found
in business today.

• Object oriented technology (OOT) - OOT is a computing paradigm that allows applications and systems to be modeled
on real -world concepts (Fingar & Strikeleather, 1996). OOT has benefited developers by allowing rapid application
development and reuse of existing code. The primary benefit for business is that OOT

Page 170

has allowed the design of systems and application that were previously impossible to design and build.

• Widespread adoption of open standards - The rise of the Internet has focused attention away from proprietary protocols
to the adoption of open standards such as TCP/IP. The result of this has been that systems designers are better able to tie
together disparate and separate systems. Additionally, open standards have opened the way for a wider base of end
users. As an example, you are now able to perform most banking functions at home through your PC without the
purchase of additional software. Before the adoption of open standards this would not have been possible.

The effect of these two concurrent revolutions, within business and technology, is the creation of new business
environment that is fundamentally different from the current business environment. What is this new environment then,
and what are its characteristics? The new environment creates a global market that continuously operates twenty-four
hours a day, seven days a week, and is defined by the following characteristics:

• Increased global competition.

• Global distribution of organizational resources.

• Increased pressure to continuously improve core business processes.

• The acceleration of the decision-making cycle.

• Increased demand for information throughout the enterprise.

Businesses that are to survive must obtain a mastery of the complex and dynamic environment. To gain an advantage in
the coming age, many businesses are looking to redesign core processes (engaging in Business Process Redesign) by
transitioning to a "knowledge -based organization." These two terms have appeared in much of the current literature, but
what exactly are they and what is their relationship to IT?

Business Process Redesign (BPR) is "the analysis and design of workflows and processes within and between
organizations" (Davenport and Short, 1990). It seeks to find fundamentally better ways to serve customers, partners, and
the organization itself. Furthermore, Davenport and Short (1990) define a business process as "a set of logically related
tasks performed to achieve a defined business outcome." With this definition we can define three main factors that
comprise a business process:

Page 171

• Entities

• Objectives

• Activities

Information technology is a key enabler of BPR that should be used to recognize and break away from outdated business
rules and underlying assumptions (Hammer 1990). Malhorta (1998) states that IT and BPR have a recursive relationship,
where IT supports business process that in turn should be expressed in terms IT can provide. It should be noted that
although BPR had its roots in IT, it is primarily a business initiative.

The knowledge-based organization provides employees at all levels with access to information to make necessary
tactical and strategic decisions. It seeks to leverage an organization's knowledge base as a tangible asset of the
organization. The knowledge -based organization can be viewed in some ways as a logical outcome of BPR. The
ultimate goal of these two is to align IT, business strategy, business process and structure into a cohesive whole.

The confluence of these two has created an explosive demand for information. Business must draw together diverse and
separate islands of information into a seamless and integrated information system that is accessible at all levels of the
enterprise. From a technical standpoint, this means universal access that is both transparent and adaptive (Fingar and
Strikeleather, 1996). This creates system requirements of enormous complexity and sophistication, that current tasked
based and procedural methodologies and architectures are incapable of handling. A new paradigm to information system
design must be developed that is capable of handling these requirements: a next generation information systems model.

As an additional challenge, this new computing model must be placed within a global environment characterized by a
distribution of end users and resources, and the immateriality of time; that time in our new system is relative. While
client -server-computing models have existed for a number of years they have proven to be inefficient. Not until the full -
scale use of the Internet did client-server models develop to the necessary level of sophistication with three-tier and n -
tier models. These models have given system architects a robust framework to develop distributed applications by
separating business logic from application logic from the user interface. However, we

Page 172

are still left with the fact that system architects predominately utilize the old procedural and tasked-based methodology.
This is the current state of enterprise computing today. With the requirements of the new business environment defined,
we can begin the construction of this next generation information systems model. Appendix A shows a logical flow of
the dynamics that necessitate this new model.

Definition and Characteristics

Distributed Object Business Engineering (DOBE) is the new model; it draws together distributed object computing
within the context of the knowledge-based organization.

DOBE is a framework for developing object based distributed enterprise-wide information systems. This framework
defines a process and an open architecture for system design that fulfills the requirements of operation in the emerging
business environment. Although this is a broad definition, it may help to define some characteristics of DOBE:

• Process oriented - The traditional model of tasked-based systems that seek to break task down into smaller and smaller
sub -task is inadequate in a distributed environment. Rather, the process of work should be the focus for systems.
Visualizing how workflows within the enterprise occur will offer a basis for system modeling.

• Uses a cognitive based interface - New and improved interface methodologies must be adopted that place greater
emphasis on human cognition. Systems must present information in a manner that reflects our own perception of reality
and not the computers.

• User centered - Today business processes are a human phenomenon, and systems must be designed in accordance with
this principle in mind. Most end users within the enterprise have attained a level of computer mastery far below systems
architects. Yet these same architects ignore this and design systems that are unsuited for end users needs.

• Based on real world concepts not technology - The conduct of business is done in the real world and systems that are
used in business must reflect this facet. It is more natural to think in terms of the real world concept than to think about
data structures and procedures (Fingar and Strikeleather, 1996).

• Technology is a conduit -Technology is not the basis for a solution but merely a tool that draws together the
information architects

Page 173

Figure 1.
Relationship between the component parts of Distributed Object Business Engineering.

and the end users into a holistic approach (Young, 1997).

• Component based - A component-based system has four main advantages over existing procedural models as defined
by Fingar and Strikeleather (1996). Components reflect the real world, are considerably more stable, reduce system
complexity, and are reusable. The result of this is systems with a reduced codebase, reduced development time,
consistent behavior, and improved quality of information.

The defining characteristics discussed above provide a skeletal framework from which to begin design and construction
of our new systems. As with any engineering project, there must be an architecture and a process to provide the
underlying groundwork. Architecture provides a technology independent framework for systems design. Tangential to
architecture is process, which describes a methodology to follow for system implementation and enterprise integration.

Architecture

Just as a building is based on an architectural design, so must any information system be based on a solid architecture. If
the foundation of our model is not solid, it will not work in the real world. When designing an information system there
are two fundamental architectures that must be considered equally. These two separate, yet congru-

Page 174

ent, architectures are the technical architecture and the information architecture (Clarke, Strikeleather & Fingar, 1996).

The technical architecture defines what tools and technologies will be used to develop the system. This architecture
includes what hardware, databases, middleware, and object technologies will be used. To a certain extent defining what
hardware will be used sets a path for what technology and tools will be used. The exception to this is when
implementing a Java based system. Although there is no industry standard yet developed for use in distributed systems,
there are two main technologies currently used in business today: CORBA developed by the Object Management Group,
and Com/DCOM developed by Microsoft. A new emerging technology is RMI which is part of the Java language set
developed by Sun Microsystems.

The information architecture describes the heart of the system. It includes a definition of system objects, their content,
behavior, and interaction. This enables developers to assemble and integrate self-contained objects into an integrated
solution. It is within the information architecture that the strengths and limitation of client-server computing become
apparent. The information architecture can be seen as a seven-layered model to assist in proper semantically based
architectural design.

What exactly does this model describe? Each object is divided to its own intrinsic layer depending on the object's
purpose. These individual layers are then grouped into one of three object categories that also represent the different
tiers of a typical three-tier distributed application.

The bottom two layers represent application and data objects. These two layers provide for the underpinning technology
infrastructure, object life-cycle persistence, and system intrinsics and metrics e.g., defining time, money, and date
formatting standards.

The next four layers represent the business logic of the system, which governs exactly how data is manipulated. The
entities layers represent objects that define business objects such as customer, employee, inventory item, or truck. The
processes layer is where the entities are put together to define a specific business process such as selling, buying, or
auditing. The events layer is an insulation layer to provide a mechanism for response to external stimuli such as a
competitor price change. The workflows layer can been seen as the assembly line where the previous three layers come
together. This

Page 175

Figure 2. Seven layered architectural model of Distributed Object Business Engineering.

 Layer Name Example Description

Interface Objects View • End-User Interface Provides System Interface

Business Objects Workflows • Logical combination of processes Sequencing of Events

Events • Competitor Price
Change

Representation of actions that
insulate or influence scenarios

Processes • Buying, Selling,
Auditing

Assemblage of entities representing
a business function or process

Entities • Objects,
Associations, Roles

Definition and interaction of
application objects

Application
Objects

Intrinsics and
Metrics

• Metrics Definitions of underlying
objects

Semantic definition

Infrastructure • CORBA,
COM/DCOM, RMI

Provides life-cycle persistence

layer assembles entities, processes, and events into logical workflows.

Lastly there is the presentation objects or the view layer. This layer represents objects that are responsible for data and
information presentation, as well as end user to system interaction.

DOBE is the synthesis of object oriented technology and client-server architecture. However, what emerges is greater
than the sum of its parts. The technical advantages to adopting this architecture is:

• Legacy assets can be easily integrated and leveraged through the use of legacy object wrappers.

• Ease of object integration through the assemblage of objects.

• Allows for business models to be developed that are simulation of the real world business environment.

• Business objects can be reused.

Process

Process should serve as a guide while traversing the complexity of designing a next -generation computing system,
offering guidelines for implementation and enterprise integration. Process can be seen as the methodology to be
followed in designing system architecture and implementation. At the macro level, process is divided into the phases of
assessment, planning and execution.

Assessment-what are the goals and objectives of the organization? This assessment also determines what organizational
resources are

Page 176

available and what is their current state.

Planning-How are the goals and objectives stated above realized? This is the most critical aspect of the process. A
successful outcome will only come through diligent and thoughtful planning. Here is where the system architect must
determine how legacy assets are to be integrated, what technology base and hardware, and what development tools are to
be used, etc. ''Systems created under a well -defined architecture will exhibit the qualities of conceptual integrity. In the
short -term, this quality helps organize and manage the development process. In the long -term, it facilitates business and
technical evolution" (Read, 1996, p. 18). This planning phase should be dynamic in nature allowing for the inevitable
changes that will come during the project life cycle.

Execution - This should take a staged approach by rolling the system out in various stages throughout the enterprise, or
as modules that are gradually implemented.

As with any new technology adoption, change must be carefully managed at all levels of the enterprise. Industry
experience has shown there are several characteristics to a successful technology adoption (Read, 1996):

• Preserving and leveraging legacy assets - Most businesses have invested too much time, money and effort in their
legacy systems to just have them discarded as newer systems are implemented. Legacy systems will add value to the
new systems through their semantic contents which will distribute knowledge throughout the enterprise. In addition,
they can also provide a translation service that maps internal data to object structures of the new system. The
combination of this is to provide a pathway for the gradual transition of legacy systems.

• Investing in advanced infrastructure - New infrastructures will be based on object oriented and client/server
technologies. Together these two technologies greatly increase the efficiency of the enterprise. This type of
"infrastructure can empower businesses to construct new era applications that were once technologically
impossible" (Read, 1996, p. 13).

• Transitioning staff to new skills - Existing development staffs represent a considerable knowledge base that may not
exist in written form. As such, developing new systems based on these

Page 177

advanced technologies, may require developers to change from the procedural methods they have relied upon and adapt
to entirely new problem-solving approaches, tools, processes, and organizations. Within industry development groups
are transitions to a team-based approach, where teams work together from across the entire enterprise.

• Emphasizing architecture to facilitate system evolution - As was noted earlier the speed of business is increasing. This
places enormous pressure upon architects to build flexible and scalable systems. Change may come from a shift in
business priorities, or methods, or it may come from new technology; the only sure thing is that it will come. Planning
for this inevitable change is perhaps the greatest challenge facing architects. This fact has directly contributed to the
creation of formal procedures and notations to describe systems and the inter-operation of their component parts.
"Formalizing procedures and notations helps us evaluate system architecture within the context of system goals" (Read,
1996, p. 16).

This combination of architecture and process provides the underlying groundwork for systems design. The bulk of the
time should be spent within the planning phase of the project. Within this phase, it is vital that careful consideration be
given to component design. Specifically, what constitutes the objects at each of the seven layers within the architectural
model. Good planning here will pay off in the future. Well -designed objects based on real-world concepts will be stable,
yet remain flexible to business or application rule changes. This sort of "Digital Lego" design paradigm will offer
information architects a way to rapidly design systems in response to an ever-changing business environment.

Future Trends and Conclusion

We are only scratching the surface of what is really the start of an entirely new paradigm in enterprise computing. The
concept of "Digital Legos" is only now starting to make headway into the business realm. In the future, meaning the next
five to ten years, enterprise information systems will undergo a radical transformation. Within this time we will see the
last of the monolithic mainframes

TE
AM
FL
Y

Team-Fly®

Page 178

Appendix A.

and procedural application phased out, in favor of lightweight distributed systems run off of UNIX, Windows 2000
and/or Mac OS X Servers. The groundwork has already been laid for the backend of these systems (server architecture
and object design). The real work ahead lies within the realm of adopting a true standard for distributed systems,
designing robust transaction models for objects, and system usability.

Page 179

Usability, which once stood in relative obscurity, will gain in importance. As data sets grow in complexity, the need to
visualize them in a manner consistent with user cognition will also grow. The traditional spreadsheet method of
presenting information is insufficient to present multidimensional data sets, or data not based on alphanumeric
symbology such as multimedia data. Other methodologies must be developed to present these types of data, including
3D hyperbolic views, and data fly-through.

Systems based on the DOBE framework provide for the requirements of next-generation enterprise information systems.
DOBE systems are scalable, flexible, reusable, dynamic, and stable. Without object oriented technology, systems of this
nature would not be possible. The possibilities presented through advanced technology design either through DOBE or
another framework must be tempered with the ultimate goal in mind: to ensure the alignment of information
technologies with business goals.

References

Clarke, J., Bowman, T., Strikeleather, J. (1996). Client/Server Architectures (The Next Generation Computing Series).
The Technical Resource Connection, Inc. Available at: http://www.trinc.com

Clarke, J., Strikeleather, J., Fingar, P. (1996). Distributed Object Computing for Business (The Next Generation
Computing Series). The Technical Resource Connection, Inc. Available at: http://www.trinc.com

Davenport, T.H. & Short, J.E. (1990 Summer). "The New Industrial Engineering: Information Technology and Business
Process Redesign," Sloan Management Review, 11-27.

Fingar, P. & Strikeleather, J. (1996). Getting Started with Object Technology (The Next Generation Computing Series).
The Technical Resource Connection, Inc. Available at: http://www.trinc.com

Hammer, M. (1990, July-August). "Reengineering Work: Don't Automate, Obliterate," Harvard Business Review , 104-
112.

Harmon, Steve (1999). Many -To-One: Total ISDEX Market Cap Equals Microsoft. Internetnews.com. Available at:
http://www.internetnews.com/stocks/column/article/0,1087,archive_41_72661,00.html

Malhorta, Y. (1998). Business Process Redesign: An Overview. @Brint

Page 180

Research Institute. Available at: http://www.brint.com/papers/bpr.htm

Read, D. (1996). Enterprise Computing: The Process (The Next Generation Computing Series). The Technical Resource
Connection, Inc. Available at: http://www.trinc.com

Young, E. (1997). "An Integrated Knowledge Environment," DM Review Magazine . Available at:
http://www.dmreview.com/issues/1997/nov/articles/nov97_20.htm

Page 181

Chapter XI—
What Are the Actual Industry Expectations and Needs with Regard to Object Oriented
Technology?

Luis F. Proano
Pan American Health Organization

This chapter is a review of journals and printed articles published during the last two years. It will give you an idea of the current
needs in the industry due to object oriented technologies. It also analyzes factors like the lack of mainstream products and object
standards influencing the development of skilled professionals in working with object databases. It will show industry trends and
needs and make recommendations for training approaches in order to develop skilled professionals who will satisfy these needs.
It will tell you what you need to know to make yourself more marketable in an ever-changing industry.

It seems that the industry agrees that object oriented databases can outperform relational databases at handling complex
relationships among data. It has been mentioned that an object database could model the supply chain based on a mix of
product, storage and transportation attributes. However, object databases have not caught on in supply-chain
management. This is mostly due to the need for specialized skills and the exotic nature of object oriented databases.

The question that this chapter will answer is: What are the actual

Page 182

industry expectations and needs in regard to object oriented technology?

This chapter will focus on current industry trends. The implications of following those trends will be explored as well as
the availability of resources. It will address the lack of mainstream products and object standards that make it more
difficult to develop skilled professionals. It will make recommendations for training approaches in order to develop
skilled professionals who will satisfy these needs. It will tell you what you need to know to make yourself more
marketable in an ever-changing industry.

This chapter is a review of journals and printed articles published during the last two years. This study has been able to
identify the current and future industry requirements.

Industry experts predict that in the near future the object paradigm will be adopted as the dominant approach to systems
analysis, design, and implementation. Jones, Hilton, and Lutz (1999) mention that the promise of the object-oriented
approach to systems analysis hinges on correctly partitioning the problem domain into essential classes and objects.
Most developers agree that this is no easy task.

Object Databases

Object databases have the potential to solve problems in any industry in which processes are so complex that relational
databases can't keep up. For example, in Baer's (1999) article he explains how manufacturers, distributors, shippers and
retailers must constantly juggle when to manufacture product, where to deploy finished goods inventory and how to
choose the most economical routes or carriers to get it there. A food manufacturer with a mix of packaged and
perishable products might have to weigh the optimizations differently by product. An object database could model the
supply chain based on a mix of product, storage and transportation attributes.

Baer's agrees that even vendors face the '"weird product" syndrome as they try to accustom customers to objects.
Analyst Merv Adrian at Giga Information Group in Norwell, Mass. said that "it's hard to ask someone to sell something
they haven't heard of. Until now, object databases have been more for rocket scientists." Adrian expects the object-
database market to double this year, spurred by the growth of object-oriented languages such as Java. It still seems that
information technology managers have to weigh the benefits of ob-

Page 183

ject-oriented databases versus the pain of developing and maintaining them.

Finally, Baer warning: "It's harder to find developers and database administrators who can handle objects than it is to
find specialists in more common relational products" seems to apply to other issues of object oriented technologies as
well.

John Kerin, from the Chicago Stock Exchange, spent nine months finding the specialists he needed to maintain his
application. "Just knowing C++ and syntax wouldn't cut it," he says. "You need to know how object databases and
ORBs (object request brokers, which allow objects to communicate) really work.

Limited research has been done to date regarding class and object identification and refinement. Jones et al. (1999) paper
presents the findings of an empirical study that assesses the frequency of use of various strategies for identifying and
refining classes and objects during systems analysis and tests the hypothesized relationships between strategy usage and
several respondent characteristics. Results suggest analysts should learn a base strategic repertoire complemented by
selected strategies targeted to the application type and the analyst's previous background.

Organizations have moved beyond the pilot project stage and are now using object technology to build large -scale,
mission -critical business applications. Unfortunately they are finding that the processes which proved so successful on
small, proof-of-concept projects do not scale very well for real-world development. Today's organization needs a
collection of proven techniques for managing the complexities of large-scale, object oriented software development
projects, a collection of process patterns.

Business Wire magazine (1999) reports that Ardent Software, Inc. (NASDAQ:ARDT), a global data management
company and a leading provider of advanced object database technology, announced today the signing of its 200th
academic customer and the subsequent formation of the Ardent Object Technology Academic Partner Program. This
new program, designed for colleges and universities worldwide, provides students and faculty with access to Ardent's
advanced object oriented software technology.

"With the increasingly widespread use of the Web and other multimedia applications in the business world, Ardent sees
a growing demand for developers who are educated in distributed, object ori-

Page 184

ented systems like O2," according to Francois Bancilhon, vice president and general manager with Ardent's Object
Technology business unit. "The signing of our 20th Academic Partner and the demand for the expansion of our
Academic Partner Program are clear signs that the academic community also recognizes this opportunity."

Colleges and universities in 34 countries use the O2 ODBMS to support instruction and research in object oriented
programming and database management, providing crucial hands-on experience to more than 6,000 students each year,
better preparing them to meet the market's demand for experienced object-oriented developers. Participating institutions
include: Johns Hopkins University; Stanford University; University of Alberta, Edmonton Canada; University of
Pennsylvania; Brigham Young University; Hartford Graduate Institute; Centre de Recherche en Informatique de
Montreal (CRIM): University of Rio de Janeiro; CNAM Paris; University of Paris XI; University of Dortmund;
University of Mexico; Buckingham University; University of London; University of Tokyo; and University of Osaka.

Software and Applications Development

In most implementations of OOT, both encapsulation and polymorphism are available in one way or another. Purists
would argue that only implementation inheritance fully satisfies the requirements of an object oriented programming
concept. Languages such as C++, Java, and Smalltalk support both implementation inheritance and interface inheritance.

An important concept supporting only interface inheritance is Microsoft's Component Object Model (COM). Instead of
reusing the actual software code, only the specifications of an object are reused. This is a significant simplification,
making it possible to work around the lack of standards on how to bind binary objects together; also, objects
implemented in different languages can be combined into one application. The objects become software components.

The development of object technology has altruistic roots. The concepts of pure object orientation stem from an
academic pursuit for capturing real-world entities and providing a more intuitive method of interacting with computers
than through standard procedural programming constructs.

However, commercial constraints have put pressure on the ideological foundations of object oriented technology as
vendors vie for

Page 185

larger shares of this rapidly expanding market. Specifically, the complex but idealistic goal of distributed object
computing to allow companies to build and rebuild business applications by assembling and purchasing interoperable
objects that conform to a single object model has been hijacked by the debate surrounding competing approaches to
object middleware.

Recently, pragmatic choices about rival middleware architectures — should companies invest in Microsoft's Distributed
Component Object Model (DCOM) or a union of Sun Microsystems' Java technology with the Object Management
Group's Common Object Request Broker Architecture (CORBA) — have replaced the commendable concepts of pure
object technology. This situation is exacerbated as simplified objects such as JavaBeans or ActiveX components
increasingly find use as the software building blocks of choice within Internet protocol-based (IP-based) networks.

However, in spite of the rapid growth of simple reusable components and graphical user interface objects that find use in
World Wide Web environments, large-scale distributed object projects are not yet common within corporate information
environments. The major stumbling block to widespread robust object architectures is the immaturity of DCOM and, to
a lesser extent, CORBA as mission-critical middleware. Although vendors are beginning to offer some key services such
as transaction processing, application and system management functions, and data integrity guarantees within object
middleware products, many IT architects remain confused about the next step in object technology adoption.

The driving principle behind OOT is that it creates a model (i.e., a software program) that emulates the real world. If at
all possible, software objects should be based on the objects we surround ourselves with. The main benefit is a design
that is comprehensible and has a greater chance of remaining as intended during the entire life of a software product.
Real-life objects stand the challenge of time and changing conditions. A software object based on the same principles
should do the same.

Reuse has often been termed OOT's greatest benefit. While this may be true in the long run, it is the author's opinion that
reuse is a beneficial result of a well-thought-out design with durable objects.

Without a proper design, there will be no more reuse with OOT than without it. This is one reason why so many reuse
initiatives have

Page 186

failed. OOT is an important enabling technology for reuse because it provides us with advanced abstraction mechanisms.
But reuse will only happen when the underlying design is sound.

A simplified inheritance model has created an emerging software component market. This may well be the largest
impact of OOT; it is possible to buy components that perform well-defined operations. And, contrary to previous days, it
is easy to integrate these components into a program. A quick search on the World Wide Web opens up a new world of
reusable components; the object bazaar is becoming a reality.

Although object oriented code may be inherently more reusable than functionally oriented code, most object oriented
legacy systems were not designed with reuse in mind. OO code, due to the very aspects that make it desirable, tends to
suffer from a wide scattering of the code that performs even a fairly simple task. It is considered to be good object
oriented programming style to write small member functions, which results in an OO system consisting of a large
number of small modules. Through inheritance, a class may inherit one or more classes, each with its own associated
methods, but few defined locally.

These aspects of object oriented code underline the need for good, semantically based tools to aid in the understanding,
and thus the reuse, of object oriented code.

Peter Ruber (1997) mentions that object -oriented technology (OOT) development is difficult and expensive, and it has
not worked out for everyone. However, a new class of development tools and object request brokers (ORB) has made
the difference for some companies. Although the promise and future benefits of OOT are becoming more enticing to IS
managers, many are apprehensive about the up-front costs associated with object migration. Building an object-based
enterprise requires IS managers to rethink the entire development process. With CORBA 2.0 now firmly entrenched as
an industry standard, third-party developers are coming up with some intriguing packaged solutions. Some are
delivering ORBs that will provide as much as 80% of the application logic for certain industries. Despite gains made
during the past year, the object landscape is still going to be littered with difficult development hurdles and competing
technologies.

Chin, White, and George (1997) also mentioned that dramatic shifts in the landscape of industrial control are already
visible on the

Page 187

horizon as new software, lower-cost hardware and advances in networking technologies combine to create next-
generation control systems. Helping to shape the future are object oriented technologies. They will make control systems
more open, more flexible, more intuitive to use and offer increased productivity, regardless of the control system,
whether programmable logic control, distributed control system, or PC -based controls. The greatest benefit of object
technology is a new capacity for designing control systems that bridge diverse requirements. Distributed objects
communicate over a network system. Currently, the largest and the best known computer network is the Internet.

Nesi and Querci (1998) state that due to the growing diffusion of the object oriented paradigm and the need of
maintaining under control the process of software development, industries are looking for metrics capable of producing
satisfactory effort estimations and predictions. These metrics have to produce results with a known confidence since the
early phases of software life cycle in order to establish a process of prediction and correction of costs. To this end,
specific metrics are needed in order to maintain under control object oriented system development. New complexity and
size metrics for effort evaluation and prediction are presented and compared with respect to the most important metrics
proposed for the same purpose in the literature. The validation of the most important of these metrics is also reported.

Languages

It is not the intention of this chapter to start an argument about which object oriented language is the best. The question
is, in many cases, irrelevant; it all depends on what level of support the software development environment provides.

Until 1995, the two leading object oriented languages were C++ and Smalltalk. C++ still has the largest installed base.
Smalltalk is, in many cases, a more elegant and simpler programming environment, but it has lost a lot of its market
momentum to Java.

Java is the most exciting and important development in the field of OOT today. It started out as a platform-independent
programming development and execution environment. Its syntax resembles C++ with some of the more complex
mechanisms and limitations removed (e.g., pointers and garbage collection). The programming model,

TE
AM
FL
Y

Team-Fly®

Page 188

however, strongly resembles Smalltalk. While still in its infancy, the momentum behind Java is such that the language
will without doubt play a significant role during the next 5 to 15 years.

Rick Whiting discusses Java's current status. He states that Java is clearly a winner as a development language. IT
managers report productivity gains by factors of 2, 4, even 10 times compared to other languages. Corporations are
increasingly using Java to build business-critical, server-based software, particularly self-service programs that provide
employees and customers with access to corporate applications and databases. Adopters are coming to understand the
benefits of utilizing Java as a universal integration technology. Java's ultimate success hinges on the availability of more
robust development tools and application servers and support from online transaction processing software and other
mission -critical systems. Corporate IS is turning to Java for reasons other than making their programmers more
productive. Some see Java as the first real embodiment of the dream of object-oriented development and reusable code.
For others, Java's cross-platform capabilities and thin-client approach to deployment are the attractions. Java's biggest
drawback is its reputation for being deficient in the performance department. Java is also being hindered by a lack of
capabilities and robust third-party products.

Leilani Allen (1998) agrees that once viewed as a geeks-only language, Java is now being embraced by the pinstriped
crowd. IBM has invested $200 million in Java and has 2,500 developers worldwide working on applications. The
biggest factor driving Java is its promise of platform portability. Part of the appeal of Java is that it is cheap. It is also
very easy to learn for those who have mastered object-oriented programming. Java still has its problems, notably a lack
of robust tools that support team-based development. Java's biggest challenge will be retaining its nonproprietary status.

Don Kiely (1998) concluded in his article that a decade ago, object oriented development was hailed as a key solution to
the software productivity problem, but objects have fallen short of their promise for several reasons. Objects created in
one language are generally usable only in that language because of a lack of protocols for crossing boundaries, and
organizing objects in repositories has proven to be a nightmare.

Kiely also found that component-based development represents

Page 189

the next stage in the evolution of software development, promising to shorten development cycles, reduce skills
requirements, and cut costs associated with custom development. Component development solves many of the
shortcomings of object oriented programming and focuses on capturing business logic rather than solving esoteric
technical issues. For components that are adaptable to various uses on any platform, component -based development
depends not only on binary code reuse but on design reuse to assemble many kinds of smaller components into
frameworks. Component -based development's promise is great, but the vendors and users of the process are in for some
work to make it a reality. One of the most promising ways to realize the benefits of component-based development
would be for members of vertical industries to jointly develop standard components.

Standardization Efforts

In the last few years some experts tried to standardize object-orientation. There are different efforts to define a unique
object oriented data model.

First let us discuss why there is a need for standards. We can identify the following reasons:

1. Standards allow computer systems to communicate and provide common services.

2. Standards ensure interoperability among systems.

3. Standards facilitate communication of people (they talk about the same thing).

4. Standards ease the portability of applications.

5. Standards make it easier to learn new systems.

But there are also some problems with standardization of object-oriented topics. See the list below:

1. Different areas have different needs (OOPL, OODB, . . .).

2. It's difficult to categorize OIM technologies. There are different views of Object Orientation (conceptual view, user
oriented view, view of interoperation levels).

3. There is only little communication between groups (vendors, researchers, users).

Some groups have tried to establish a single terminology for object oriented languages, systems, databases, an abstract
framework for object oriented systems, and a set of architectural and technical goals.

Four areas of standardization have been identified:

Page 190

1. Object Request Broker: A communication element for handling distribution of messages between application objects.

2. Object Model: A single design-portability abstract model.

3. Object Services: Provide the main functions for realizing basic object functionality.

4. Common Facilities: Comprise facilities which are useful in many application domains.

The primary purposes of standardization are:

1. To establish a working definition of the term ''object-database",

2. To establish relationships between object-database technology and object oriented technology in related fields, and

3. To establish a framework for future standards activities in the OIM area.

What to Teach

Object technology offers tremendous possibilities for making the teaching of software much more effective and more
exciting for the students than ever before.

As the software community recognizes the value of the object oriented approach, the question increasingly arises of
when, where and how to include object oriented concepts, languages and tools in a software curriculum — university,
college or even high school.

There are some articles proposing a coordinated approach to structuring such a curriculum, based on systematic reliance
on the best aspects of the object-oriented method. It suggests a radical departure from the traditional methods of teaching
programming, design and analysis: the progressive opening of black boxes, also known as the "inverted curriculum" and
based on the systematic use of object-oriented libraries of reusable components. It also offers ideas for university
departments that are in search of ambitious, multi-year federating projects.

Although the discussion will mostly address the question of academic education, some of it is also applicable to courses
taught to professionals, either in public seminars or as part of an in-company training plan.

Start early, the earlier the better. The object-oriented method provides an excellent intellectual discipline; if you agree
with its goals and techniques, there is no reason to delay bringing it to your students; you should teach it as the first
approach to software development.

Page 191

Beginning students react favorably to object-oriented teaching, not just because it is trendy, but because the method is
clear and effective.

This strategy is preferable to a more conservative one whereby, you would teach an older method first, then unteach it in
order to introduce object oriented thinking. If you think object oriented development is the right way to go, there is no
reason to delay.

Teachers sometimes have an unconscious tendency to apply an idea that used to be popular in biology: that ontogeny
(the story of the individual) repeats phylogeny (the story of the species) — a human embryo, at various stages of its
development, vaguely looks like a frog, a pig etc. Transposed to education, this means that a teacher who first learned
Algol then went on to structured design and finally discovered object orientation may want to take his students through
the same path. There is little justification for such an approach which, transposed to elementary education, would mean
that students first learn to count in Roman numerals, only later to be introduced to more advanced "methodologies" such
as Arabic numerals.

One of the reasons for recommending (without fear of fanaticism or narrow-mindedness) the use of object orientation as
the first method that students will learn is that, because the method is so general, it prepares students for the later
introduction of other paradigms such as logic and functional programming — which should be part of any software
engineer's culture. If your curriculum calls for the teaching of traditional programming languages such as Fortran, Cobol
or Pascal, it is also preferable to introduce these later, as knowledge of the object oriented method will make it possible
to use them in a safer and more reasoned way.

The object oriented method is also good preparation for a topic which will become an ever more prevalent part of
software education programs: formal approaches to software specification, construction and verification. The use of
assertions and more generally of the Design by Contract approach (Meyer 1993) seems to be an effective way to raise
the students' awareness of the need for a sound, systematic, implementation-independent and at least partially formal
characterization of software elements. Premature exposure to the full machinery of a formal specification method such
as Z or VDM may overwhelm students and cause rejection; even if this does not occur, students are unlikely to
appreciate the merits of formality until they have had significant software development experience. Object-ori-

Page 192

ented software construction with Design by Contract enables students to start producing real software and at the same
time to gain a gentle, progressive exposure to formality. Some recent developments in the area of object -oriented formal
specification such as Object-Z may ease that transition by providing a natural bridge between the two areas.

How to Teach?

Not only does object orientation affect what can be taught to students of software topics, the method also suggests new
pedagogical techniques. Here are a few suggestions based on discussions with university professors as well as Bertrand
Meyer's (1993) own experience.

Progressively Opening the Black Boxes

It was mentioned above that an object oriented course on data structures and algorithms could be organized around a
library. This idea deserves further consideration, as it may actually be applied to courses on introductory programming
and many other subjects.

A frustrating aspect of many courses is that teachers can only give introductory examples and exercises so that students
do not get to work on really interesting applications. One can only get so much excitement out of computing the first 25
Fibonacci numbers or replacing all occurrences of a word by another in a text — two typical exercises in an elementary
programming course.

With the object oriented method, a good object oriented environment and, most importantly, good libraries, a less
traditional strategy is possible if you give students access to the libraries early in the process. In this capacity students
are just reuse consumers and use the library components as black boxes in the sense defined above; this assumes that
proper techniques are available for describing component usage without showing the components' internals.

With this technique students can start building meaningful applications early: their task is merely to combine existing
components and assemble them into systems. In many respects this is a better introduction to the challenges and rewards
of software development than the toy examples that have been the traditional mainstay of introductory courses.

Almost on day one of the course, the students will be able to produce impressive applications by reusing existing
software. Their

Page 193

first assignment may involve writing just a few lines enough to call a pre-built application and produce striking results.
Then they are invited to take the components making up the application and recombine them in different ways so as to
produce variants of the application, or apply them to new uses.

This black-box use of preexisting components is only the first step. As students progress, a process of progressive
opening of the black boxes will take place. The students are encouraged to start looking into the components themselves.
The teacher may wish to specify the order in which the components are to be thus examined.

Initially the purpose of this progressive opening is simply to let students understand the components, which provide
models of good object oriented designs. Then little by little the students are induced to adapt the components to new
purposes — either by copying them and modifying the copies, or by using the inheritance mechanism, whose very
purpose is indeed to support a combination of reuse and adaptation. In the process the need for new software elements
will most likely arise, so the students will start writing their own classes; they only do so after having had extensive
exposure to the best possible examples of quality object-oriented software — library classes.

For this process to work, good abstraction facilities must be present, making it possible to understand the essentials of a
component without understanding all of it: a short form (which can be produced by tools of the environment) is an
abstracted version of the class, revealing only the specification of the class, that is to say the properties which can be
used explicitly by client classes. The short form lists the exported features with their assertions, but hides
implementation properties. After students have seen and understood the short form, they may selectively explore the
internals of the class — again under the guidance of the instructor.

Apprenticeship

The technique of progressive opening of black boxes is the application to software teaching of the time-honored
technique of apprenticeship: learning from the previous generation of master practitioners of your chosen craft, and once
you have understood their techniques trying to do better if you can. For lack of available masters, one -on-one
apprenticeship is necessarily of limited applicability; but here we do not need the masters themselves, just the results of
their work,

Page 194

made available as reusable components.

This approach is the continuation of a trend that has influenced the teaching of some topics in software education before
object orientation became widely popular. The evolution of the standard Compiler Construction course of computer
science departments is a good example. In the seventies and early eighties, the typical term project for such a course was
the writing of a complete compiler or interpreter from scratch. In practice, because the front-end tasks of compiler
construction, lexical analysis and parsing, require significant development effort, the project could only be a compiler or
interpreter for a very small toy language. Then tools for lexical analysis and parsing (such as Lex and Yacc on Unix)
became widely available and started to be used more and more frequently for course projects; this made it possible to
spend less time on these front-end tasks and to include work on the more challenging aspects of compiler construction,
such as code generation. The approach outlined above may be viewed as the generalization of this trend.

The Inverted Curriculum

The pedagogical technique of progressive opening of the black boxes has an interesting analogy in a neighboring
discipline — electrical engineering. There has been much talk in recent years, in electrical engineering circles, of an
educational policy known as the inverted curriculum (Cohen 1991). The proponents of this approach criticize the
classical electronics curriculum (field theory, then circuit theory, power, device physics, control theory, digital systems,
VLSI design) as "reductionist" and suggest instead to use a more "systems-oriented" approach. In order:

1. Digital systems, using VLSI and CAD.

2. Feedback, concurrency, verification.

3. Linear systems and control.

4. Power supply and transmission, impedance matching requirements.

5. Device physics and technologies, using simulation and CAD techniques.

The ideas seem similar: rather than repeating phylogeny, start by giving students a user's view of the highest-level
concepts and techniques that are actually applied in the most advanced industrial environments then, little by little,
unveil the underlying principles.

Page 195

A Long-Term Policy

The "progressive opening" approach has an interesting variant applicable by professors who are in a position to define a
multi-year educational strategy. This variant is relevant for courses on application-oriented topics such as operating
systems, graphics, compiler construction or artificial intelligence.

To teach such an application area, it is interesting to have the students build a system by successive enhancement and
generalization, with each year's class taking over the collective product of the previous year and trying to build on it.
This method has some obvious drawbacks for the first class (which collectively serves as advance man for future
generations, and will not enjoy the same reuse benefits), and experts confess they have not yet seen it applied in a
systematic way. But on paper at least it is an attractive idea.

There hardly seems to be a better way of letting the students weigh the advantages and difficulties of reuse, the need for
building extendible software and the challenge of improving on someone else's work.

The experience will prepare them for the reality of software development in their future company, where chances are
they will be asked to perform maintenance work on an existing system long before they are asked to develop a brand
new system of their own.

A practical note is in order here. Even if the context does not permit such a multi-year strategy, instructors in charge of
software education should try to avoid a standard pitfall. Many undergraduate curricula include a "software engineering"
course, which often devotes a key role to a software project to be carried out by the students, often in groups. Such
project work is necessary, but often disappointing because of the time limitations stemming from its inclusion in a one-
trimester or one-semester course. If the academic administration can at all be convinced, it is much preferable to run
such a project over an entire school year (even the total amount of allocated work is the same). Trimester projects, in
particular, border on the absurd; they either stop at the analysis or design stage, or result in a rush over the last few
weeks to code at any cost and using any technique that will produce a running program — often defeating the very
purpose of software engineering education. It is desirable to have a little more time on your hands, so as to let the
students appreciate the depth of the issues involved in building serious software. A year-long project,

Page 196

whether or not it is part of a longer-term policy as suggested above, favors this process. It is a little more difficult to fit
into the typical curriculum than the standard trimester or semester course, but well worth the fight.

An Object Oriented Plan

The idea of a long-term teaching strategy based on reuse, as well as the earlier suggestion of organizing an entire
curriculum around object oriented concepts, may lead to a more ambitious concept which goes beyond the scope of
software education to encompass research and development. Although this concept will be appealing to certain
institutions only, it is worth some thought.

This discussion applies to a university department (computing science, information systems or equivalent) which is in
search of a long-term unifying project — the kind of project that produces better teaching, development of new courses,
faculty research, sources of publication, Ph.D. theses, Master's theses, undergraduate projects, collaborations with
industry and government grants. Many a now well-respected department originally "put itself on the map" through such
a collective multi -year effort.

The object oriented method provides a natural basis for such an endeavor. The focus of the work will not be compilers,
interpreters and development tools (which may already be available from companies) but libraries. What object oriented
technology needs most to progress today is application libraries (also called domain libraries). With a good object
oriented environment, as already noted, will come general-purpose libraries covering such universal needs as the
fundamental data structures and algorithms of computing science, graphics, user interface design, parsing. This leaves
open entire application domains – from financial software to signal analysis, computer-aided design and many others —
in which the need for quality software components is crying.

The choice of such a library development project as a unifying effort for a university department presents several
advantages:

Even though such an effort is a long-term pursuit, partial results can start to appear early.

Compilers and other tools tend to be of the all-or-nothing category: until they are reasonably complete, distributing them
may damage your reputation more than it helps it. With libraries, this is not

Page 197

the case: just a dozen or two quality reusable classes can render tremendous services to their users and attract favorable
attention.

Because an ambitious library is a large project, there is room for many people to contribute, from advanced
undergraduates to Ph.D. candidates, researchers and professors. This assumes, of course, that the application domain and
the breadth of the library's coverage have been chosen judiciously so as to match the size of the available resources in
people, equipment and funds.

Talking about resources, such a project may start with relatively limited means but is a prime candidate to attract the
attention of funding agencies. It also offers prospects of funding by industry if the application domain is one which is of
direct interest to companies.

Building good libraries is a technically exciting task which raises new scientific challenges, so that the output of a
successful project may include theses and publications, not just software.

The intellectual challenges are of two kinds. First the construction of reusable components is one of the most interesting
and difficult problems of software engineering, for which the method brings some help but certainly does not answer all
questions. Second, any successful application library must rest on a taxonomy of the application domain, requiring a
long-term effort at classifying the known concepts in that area. As is well known in the natural sciences classification is
the first step towards understanding. Developed for a new application area, such an effort (known as domain analysis)
raises new and interesting problems.

The last comment suggests the possibility of interdisciplinary cooperation with researchers whose specialty is in the
application domain rather than in software engineering. Cooperation should begin with people working in neighboring
fields. Many universities have two groups pursuing teaching and research in software issues, one (often "computing
science") having more of an engineering and scientific background, the other (often "information systems") more
oriented towards business issues. Whether these groups are administratively separate or part of the same structure – both
cases are common — the project may appeal to both, and provides an opportunity for collaboration.

Finally, a successful library providing components for an important application area will be widely used and bring much
visibility to its originating institution.

TE
AM
FL
Y

Team-Fly®

Page 198

The Future

As usual, anticipation of the technology's impact has far exceeded our ability to use it. We are beginning to see the
impact now, but it still takes much longer than expected to design and implement a practical application of OOT within
industry.

Recent developments, including open systems, convergence to fewer software and hardware platforms, emerging de
facto software industry standards, the World Wide Web, and an industry providing components that can be integrated
into complete applications, have accelerated the use of OOT. It is possible today to make entirely object oriented MES
applications.

OOT's effectiveness does not depend on how academically correct the object-oriented principles are in an MES
application. Rather, it depends on how the technology adheres to standards and principles used by the emerging software
components industry.

Driven by user demands for open architecture, object oriented technology is finding an increasingly important role in
systems development

In conclusion, it's clear that OOT is here to stay, and it is maturing. We have gone through a phase of adapting OOT to
the problems we are trying to solve. From a purely technical point of view, the general application of OOT today does
not use all of the capabilities of the concept. However, by simplifying it, the benefits of OOT have become more
accessible and easier to apply.

When looking for an MES solution, emphasis should be put on how configurable the solution is to the problem it is
intended to solve. A future scenario puts the MES vendor together with the end user of the solution, building a model of
the application based on existing components and generating the system from the model.

This scenario puts requirements on the MES vendor as well as the customer. MES vendors must have an object oriented
implementation of their solutions based on software components and general de facto and real industry standards.

The customer must focus on problems to be solved and distance himself/herself from the details of how the solution is
implemented. Instead, the focus should be on openness and using industry standards, powerful configuration tools
accessible to the end user, the extent to which the solution fits into the domains of control systems,

Page 199

from instrumentation to enterprise resource planning (ERP) and from plant design to maintenance.

References

Allen, L. (1998). A sip of Java? Mortgage Banking, 58(12), 107-108.

Ambler, S. (1998). An introduction to patterns. Software Development, 6 (7), 70-72

Baer, T. (1999). Object databases. Computerworld, 33(1), 66 -67.

Bock, C., & Odell, J. (1998). A more complete model of relations and their implementation: aggregation. Journal of
Object-Oriented Programming, 11 (5), 78-70.

Business/Technology Editors, (1998). ArdentSoftware Launches New Academic Partner Program to Meet Industry
Demand for Object-Oriented Programming Skills. Business Wire, 1.

Calvanese, D., & Lenzerini M. (1994). Object-oriented schemas more expressive

Chih-Ting Du, T., & Wolfe, P.M. (1997). An implementation perspective of applying object-oriented database
technologies. IIEE Transactions, 29(9), 733-742.

Chin, K., White, P., & George, G. (1997). Controlling the Future. Chemical Engineering, 104(12), 74.

Chu, B., Long, J., & Matthews, M. (1998). FAIME: an object-oriented methodology for applications plug and play.
Journal of Object Oriented Programming, 11(5), 20 -26.

Etzkorn, L., & Davis, C (1997). Automatically Identifying Reusable OO Legacy Code. Computer, 30(10), 66-71.

Hardgrave, B.C., & Douglas, D.E. (1991). Object-oriented education: Trends in information systems and computer
science curricula. The Journal of Computer Information Systems, 39(1), 1-6.

Hoske, M.T. (1998). Objects make software behave like hardware. Control Engineering, 45(13), 70-72.

Jones, C. G., Hilton, T.S.E., & Lutz, Charles M. (1998). Discovering objects: Which identification and refinement
strategies do analysts really use?. Journal of Database Management, 9(3), 3-14.

Kaindl, H., & Carroll, J.M. (1999). Symbolic modeling in practice. Communications of the ACM, 42(1), 28-30.

Kiely D. (1998). The component edge. Informationweek, 677, 1A-6A.

Kiely, D. (1998). Objects fall short of promise. Informationweek, 677, 4A.

McGregor, J.D. (1998). Now where did I put those bugs? Journal of

Page 200

Object-Oriented Programming, 11 (6), 9-14.

Meyer, B. (1993). Towards an O-O Curriculum. Journal of Object-Oriented Programming , 585-594.

Moriarty, T. (1998). Borrowing from OO. Database Programming and Design, 11(5) , 13-15.

Nesi, P., & Querci, T. (1998). Effort estimation and prediction of object-oriented systems. The Journal of Systems and
Software, 42(1), 89 -102.

Noffsinger, W.B., Niedbalski, R., Blanks, M., & Emmart, N. (1998). Legacy object modeling speeds software
integration. Communications of the ACM, 41(12), 80-89.

Olsen, D.H., & Sudha, R. (1999). An empirical analysis of the object-oriented database concurrency control mechanism
O2C2. Journal of Database, 10(2), 14 -26.

Patrizio, A. (1997). Object theory is fine, practice is better. Informationweek, 624, 12A-14A.

Potok, T. E., & Vouk, M. A. (1997). The effects of the business model on object-oriented software development
productivity. IBM Systems Journal, 36(1), 140-61.

Ruber, P. (1997). Object relief. InfoWorld, 19(4), 85 -86.

Whiting, R. (1998). Is the Java cup half full or half empty? Software Magazine , 18(13), 43-46.

Page 201

Chapter XII—
Business Process Reengineering with Object Oriented Technology:
Is the Gamble Worth the Risk?

Robert M. Gittins
American University, USA

The rise of Object Oriented (OO) technologies has been nothing if not spectacular in the past few years. The IT world has
witnessed the next generation of cutting-edge technology with the advent of OO programming languages, OO analysis and
design, OO CASE tools, OO database management systems (OODBMS), and OO modeling. While the potential for this new
technology has IT and business professionals extremely excited, the burgeoning field is undeniably immature and currently lacks
the stability necessary to be considered mainstream or a reliable option for companies that are about to reengineer their business
processes. Despite the growing popularity of OO technology, there are numerous issues that have contributed to its inability to
firmly entrench itself and take over from the older, proven technologies. Object Oriented technology's image problem has created
a highly difficult decision- making process for corporations about to embark on business process reengineering (BPR) projects.
At this time, reengineering with OO technology is a significant risk for companies to make, and those who have moved forward

Page 202

with OO technology have not, for the most part, seen the results that they were hoping for and their organizations are now
suffering as a result of this decision.

The rise of Object Oriented (OO) technologies has been nothing if not spectacular in the past few years. The IT world
has witnessed the next generation of cutting-edge technology with the advent of OO programming languages, OO
analysis and design, OO CASE tools, OO database management systems (OODBMS), and OO modeling. While the
potential for this new technology has IT and business professionals extremely excited, the burgeoning field is
undeniably immature and currently lacks the stability necessary to be considered mainstream or a reliable option for
companies that are about to reengineer their business processes.

Despite the growing popularity of OO technology, there are numerous issues that have contributed to its inability to
firmly entrench itself and take over from the older, proven technologies. Object Oriented technology's image problem
has created a highly difficult decision-making process for corporations about to embark on business process
reengineering (BPR) projects. The benefits and challenges of this new technology, as they relate to the BPR process, are
discussed below.

What OO Technology Can Bring to Companies Seeking to Reengineer

The mainstream press has picked up on the enthusiasm of OO technology vendors in portraying this new technology as
an IT messiah of sorts. This being the case, IT managers are beginning to feel pressure to start implementing OO
technology in order to reap the rewards that the pundits are discussing in the appropriate journals, magazines, and
newscasts. This pressure stems from the numerous benefits that OO technology has over the technologies that are
currently being used.

If OO technology lives up to its hype, companies may expect to see substantive benefits from its implementation,
including:

Reuse of Code

One of the inherent advantages of OO technology is that once an object has been created, it may be recycled any number
of times to meet similar needs. Minor modifications may be necessary, but that will likely be a trivial task. Code reuse
will save companies

Page 203

time and money during the development process, once they have developed objects that may be reused, or once they
have access to an object library.

Simplified Maintenance

Another inherent benefit of OO technology is the ease in which objects may be modified and maintained. Once the
change to the object has been made, the modification is reflected in all of the applications that make use of this object. It
will no longer be necessary to make numerous changes to existing code or spend time testing the code to ensure that the
changes did not adversely affect another part of the system.

Improved Productivity

Albeit a long term benefit, companies that implement OO technology should witness an increase in productivity. This
increase will be a function of the ease of creating, modifying, and maintaining OO systems, and the ability to generate
high quality applications in a shorter amount of time than is now possible. Code reuse and qualified OO programmers,
systems analysts, and network managers must all be present in order for this advantage to be realized.

Complete Support of GUI's

OO technology allows end -user applications to be created in a ''user friendly" way. Graphical User Interfaces make
applications easier for end users to learn and to use them more efficiently once they become familiar with the new
system.

The ability to Support System Complexity

Building a system with OO technology is similar to a child playing with Legos. Once a solid foundation has been built
and the user becomes familiar with how the technology works, the size and complexity of a system may continue to
grow and expand. This will be a key factor as companies begin to recognize the need to reengineer and create complex
systems to meet their business needs and retain their competitive advantage.

The potential of OO technology is great and a good number of companies are beginning to look toward OO technology
as a catalyst and as a means of change. For example, High Tech Systems, Inc. has developed extensive training materials
in order to provide the skills necessary to succeed in the OO field. The Object Discovery courses materials conclude:

. . . the urgent need to integrate these powerful business technologies into one methodology has not been explored or
applied until quite recently. Exciting developments are now

Page 204

being produced by combining BPR with the well-established procedures of class and object modeling. The application of
object modeling techniques to business process reengineering provides an effective and timesaving method for rethinking
and redesigning business processes, thereby improving critical measures of performance such as cost, quality, service and
turnaround. More importantly, applying these integrated techniques to the reengineering process quickly leads to the
discovery of solutions that can be easily understood and quickly implemented at all levels of a corporation (High Tech
Systems, Inc., 1997).

Those companies that have already reengineered their business processes under an OO paradigm have witnessed mixed
results. For some, OO technology has lived up to the promises of the vendors, and the press, and has propelled the
company towards higher profits and an expanded customer base. However, other corporations have not been so lucky
and have had a difficult time during this process, and the obstacles they have encountered are discussed below.

OO Technology Challenges for BPR

Lack of OO Tools, Standards, & Practices.

While there are numerous OO programming languages available for OO systems development, there are decidedly few
proven systems analysis and systems design tools available for OO programmers to utilize. Until these tools are
developed and implemented, it will be difficult for OO technology to establish a substantive foothold from which it may
expand. Additionally, developers have spent a great deal of time and money with the legacy tools that they currently use,
and they will not work within an OO framework. There will have to be a convincing argument for developers to give up
their existing tools. Without new OO tools, companies run the risk of implementing a technology that may well hinge on
the individual efforts of a small number of their IT staff. This is not a good way of encouraging people to accept a new
technology.

Java was supposed to be the saving grace of the OO programming world, "In the beginning of Java's life, the vendor and
user community reacted with overblown optimism to the promise of an object-oriented, platform-independent saviour
(Burger, 1999)." However, Java

Page 205

has not lived up to its hype, or expectations, and Sun Microsystems Inc. is now struggling to define Java in such a way
that it will prove to be a useful OO language. In fact, no one can really determine if Java is a programming language or a
platform in and of itself. As the situation currently stands, companies that are thinking about reengineering with OO
technology are forced to decide the ultimate outcome of the Java debate and they have little guidance in making this
decision. If they decide to move toward Java, they are faced with the possibility that Java will be defunct within five
years which would leave the company in a very precarious position.

If companies are required to invent their own OO tools, they must also wrestle with the issues of standards and practices;
"Although object-oriented technology seems promising, . . . the lack of consensus on the object-oriented model is the
most important problem to be resolved in object -oriented technologies, a fact confirmed by the different interpretations
appearing in different object-oriented prototypes (Du & Wolfe, 1997)." This translates into an uncomfortable situation
for anyone contemplating reengineering with OO technology, especially when it becomes obvious that while OO
technology application development tools will allow a corporation to customize its products at a highly detailed level, it
does possess a high learning curve and requires a long development process (Freeman, 1997).

Furthermore, a lack of standards will also disrupt the role of database management systems (DBMS) within the
corporate structure; "Many people believe that object-oriented architecture has the potential to form the basis for the
next generation of database management systems. However, a lack of consensus and standardization are hindering the
widespread adoption of object-oriented concepts (Du & Wolfe, 1997)." The DBMS has become an integral and
invaluable tool in a company's IT arsenal. It is an imperative system that many companies cannot operate without. If a
corporation must decide to reengineer with OO technology and have to worry about the functionality of their DBMS,
they are unlikely to reengineer with that technology. To do so would be to put their company at grave risk without a
safety net.

Without an overarching way of enforcing common programming, design, and analysis policies and procedures, it will
prove to be an enormous task to find a way to pay for the implementation of this new technology. Companies that jump
onto the OO bandwagon may

Page 206

also place themselves in jeopardy of having to reevaluate and reengineer their standards and practices to conform to
industry standards and practices as they are created and accepted. At the present time, there are not very many
companies ready to gamble with implementing OO technology before it really solidifies itself as the latest IT standard
due to the overriding belief that, "if we are ever to reap the rewards promised by distributed objects, we need a single
standard to emerge for communicating between objects. It is bad enough we have to deal with two major standards,
CORBA and Distributed Component Object Model-there are multiple versions of each (Petreley, 1998)."

Expense.

At this stage in its development, OO technology can become a rather costly investment for companies that attempt to
implement it. The technology itself requires a significant investment and may include OO tools, development of a new
design environment, modeling tools, hardware, training, end-user support, and many other expenses associated with the
implementation of any new technology. In fact, Chuck Lewis, CEO of Financial Technologies International in New
York maintains that, " . . . if time and costs are crucial factors for your company and your developers are unfamiliar with
object technology, components, rather than true object-oriented application development, may be your best bet
(Freeman, 1997)."

According to Norman Kerth, a Portland Software Development Consultant, the reusability "benefit" of OO technology
may be an expensive endeavor:

Building reusable objects requires extensive analysis and design. You really need to understand what the generalities are . . .
Then you will need to invest extra time in testing and quality assurance, optimization, and documentation. All this takes
time and labor, which increase the cost of the code. IT departments must also add to the payback equation the cost of tools
to support reuse, such as version control and repositories. Finally, the cost of administering an ongoing reuse program must
be considered. With all these elements, it becomes apparent that reuse doesn't come cheap (Radding, 1998).

This is but one of the areas in which OO technologies will impact

Page 207

a company's reengineering budget.

A corporation that decides to move toward OO technology would be wise to continue to support its existing systems
which would incur the cost of maintaining that system. There would be additional costs associated with the
reengineering process itself. Most companies witness a drop in productivity and efficiency during a period of
reengineering which can be an expensive process. As the reengineering process begins to take place, there will be
significant expenses for staff training. Most people find, IT personnel included, that OO technologies have a fairly high
learning curve and it can take upwards of 8 months to a year before the staff becomes competent to function on their
own with the new OO system.

There are also costs associated with distributed objects being accessed over the corporations network:

Estimates vary, but once distributed objects are added to the corporate net, overall performance could dip from 5 percent to
35 percent. This decrease can be traced to two causes: network overhead and processor overhead. A negligible source of
network overhead will be the messages exchanged by the objects themselves. A more significant source will occur at the
machines that invoke the objects. Objects require more processor time. This will result in delays as objects traverse a net.
End-users on interactive applications will likely see degraded response times. The situation is only going to get worse as
more and more applications are distributed and traffic volumes will climb, particularly as desktop applications are rewritten
and deployed across the corporate network . . . But what about processor overhead? This is the performance decrease that
can be linked to all the ORB components that must be processed. (Since ORBs are middleware, they by definition force
processors to do more work.) Not all ORB software is well-optimized. Processor overhead will have a definite impact on
latency. Once again, end users will see slower response times (Golick, 1998).

As the new system comes on-line, many companies will find that they will have to replace a high number of end -user
workstations in order to support the new applications. Depending on the size of the

TE
AM
FL
Y

Team-Fly®

Page 208

organization and the complexity of the system developed, this can be an extremely large
expense.

Finally, as with any reengineering effort, there will be numerous unforeseen costs that tend to bombard the organization
throughout the reengineering process. While it is difficult to find exact numbers and budget information that covers this
topic, it is a generally accepted belief in the industry that these costs are extensive and often found to be prohibitively
expensive. Budget forecasts for reengineering projects often fail to take into consideration the monetary impact on end-
user departments which invariably present themselves during the reengineering process. Object Oriented technology is
clearly a large investment with a great deal of risk in the current marketplace.

The bottom line on this issue is simple:

Although there have certainly been object success stories, most people tend to remember the expensive failures. Object
development is difficult and expensive, and it hasn't worked out for everyone . . . Although the promise and future benefits
of OOT are becoming enticing to IS managers, many are apprehensive about the up-front costs associated with object
migration. Companies deep into their object-development cycle say that you can't measure the investment of money and
labor . . . As enticing as object technology has become, its drawback is the high cost and associated high risk of getting
started (Ruber, 1997).

Companies that decide to reengineer with OO technology must be prepared for the extensive budget and resource impact
that comes with their decision.

Relational Technology vs. OO Technology.

A great majority of the world's data is contained within relational technology despite the fact many of these legacy
systems are being developed using OO technology. The sheer volume of this data frightens many people as they begin to
consider a paradigm shift away from relational technology:

Object-oriented technology, like almost all new technologies, must overcome different legacies on its way to acceptance.
There is the legacy of old systems that have been built in a

Page 209

more traditional, structured way and don't mix easily with objects. As a matter of fact, structured software-development
techniques have only now, after about a decade of promotion, firmly established themselves (Kozaczynski & Kuntzmann-
Combelles, 1993).

It is difficult for many people to fathom moving enormous data stores from a firmly entrenched technology into a
technology that is just beginning to show promise.

Many people struggling with this issue have come to the conclusion that, "At present, the most frequently used approach
to developing systems involving complex data types employs some form of a hybrid relational database or an object-
oriented database. Much work remains to be done before it becomes clear which of these approaches will become
dominant (Du & Wolfe, 1997)." If this is in fact a commonly held belief, under what circumstances would OO
technologies be implemented over the proven relational technologies? It seems fairly obvious that few people would
benefit from moving directly into the world of OO DBMS at this point unless there was an overwhelming advantage for
doing so. Even so, this "advantage" would be placing the organization at risk in order to obtain their reengineering goal,
especially when the current status of OO DBMS is taken into consideration; "Object-based databases have not been
popular, even though most new developments use object-oriented programming. These environments go through
horrible contortions to map from an object -based view of data into relational columnar views-a time consuming and
error-prone process (Morgenthal, 1998)."

With the current dependence on legacy relational systems, it has become a daunting task to obtain the necessary skills to
make a transition to OO technology; "the main concern of any object enthusiast should not be whether object technology
will be around in the future, but whether the OO concepts can avoid the kind of dilution that have plagued structured
techniques. If everything is advertised as object -oriented, the burden is on the buyer to ascertain what is OO and what is
not (Meyer, 1998)." OO technology requires a fundamental shift in programming, development, design, analysis,
implementation, and testing. With this being the case, many companies are concerned about such a shift, largely due to a
lack of qualified personnel required to make this type of transition. There simply does

Page 210

not appear to be an overwhelming reason for companies to move away from the proven relational technologies that have
become entrenched in corporate structure and in the mind set of people making the IT decisions for these companies.

Training.

OO technology has a decidedly high learning curve for everyone involved in the process, "[T]he investment in people
whose experience and expertise are in other ways of doing things. To become accepted, the object-oriented way of
thinking must become the natural way of doing things. Now it presents a steep learning curve (Kozaczynski &
Kuntzmann-Combelles, 1993)." Management is faced with making a decision that will profoundly alter the way their
systems are created and the way their staff performs their responsibilities:

Despite the hype, the technology created by Sun Microsystems, Inc. is still maturing, and companies are still learning how
and when to use it, particularly in Internet, intranet and extranet environments. Object oriented programmers with the
necessary Java and business experience are hard to find. Many corporate information technology staffs are fully occupied
wrestling with more pressing year 2000 and enterprise resource planning projects (Sliwa, 1998).

System programmers, systems analysts, database developers and administrators, and system administrators will all have
to become familiar with a completely different way of doing their jobs. This transition will be both costly and time
consuming if the transition is made by current staff. If new staff members are brought in, this process will be similarly
costly and many companies will have problems finding qualified people from a relatively small pool of qualified
candidates.

Once these hurdles have been cleared, there will have to be a clear and focused approach for dealing with end-users.
They will have to be introduced to the new OO paradigm and encouraged to look for the benefits of the new system.
Additionally, numerous training exercises and mentoring programs must be developed and implemented to acclimate the
end-users to the new system. Companies that ignore the cultural change aspects of this transition will find themselves
consumed by an unhappy staff, a loss of productivity, and a staff unwill-

Page 211

ing to work with the new system.

Again, CEO Lewis provides valuable insight into this process as he concludes that, "Object-oriented techniques have
enabled our organization to establish itself as a leading provider of next generation applications for the securities
industry . . . [b]ut it's taken us three years to reach the top of the learning curve, and counting everything, we've invested
more than a hundred million dollars in developing a complete architecture and application set for the financial industry
(Freeman, 1997)." As Financial Technologies International has learned first hand, reengineering with OO technology
has a high cost, both in terms of budget impact and personnel, as well as with the training of qualified individuals that
are a mandatory component to the OO reengineering process.

Testing & Metrics.

OO technology offers new challenges for developing and interpreting test results for the newly designed systems. There
is little guidance on the market for dealing with testing and how one should gauge the results. This is truly an instance of
having to think outside of the box, however, in this case the box has never been completely opened before. Companies
may well find this issue to be prohibitively expensive both in terms of budget impact and also in terms of time and
development costs.

The issue of metrics will also present obstacles for many people. There have been countless ways of measuring
productivity for current technology, however, it does not appear that these metrics will be viable with OO technology.
Again, companies will be largely on their own to develop these metrics until industry standards are developed and
implemented. It is unlikely that a large number of corporate executives will want to position their business for the future
in this manner.

Risks vs. Benefits

When a company that is seriously considering moving towards OO technology takes a look at all of the issues discussed
above, they will be forced to analyze the benefits that they are expecting to see against the many growing pains that this
new technology is going through. This process is likely to be confusing, and companies will be forced to run the risk of
making a premature decision that will limit their ability to remain competitive and productive. The decision to
implement OO technology must be made carefully with realistic expectations. Furthermore, organizations must
determine if the benefits that the proponents and vendors off OO

Page 212

technology are continually testifying to are actually as beneficial as they are claimed to be. Case in point, reuse of code
is often listed as a significant advantage of OO technology; yet, code reuse has been a relatively common practice,
cutting and pasting for example, with many of the older technologies that are widely utilized throughout the business
and IT industries. Organizations that have gone through the OO reengineering process have consistently maintained that,
"[w]hen IS managers first began hearing about object-oriented technology years ago, they heard a compelling story:
Develop a software object once and reuse it as many times as you like in different applications, thereby, saving on
application development costs . . . But such thrifty recycling is easier said than done . . . OO is known for reusability, but
reusability is overrated (Freeman, 1997)." Another fairly common perception of this "benefit" of OO code reusability
maintains, "Many say code reusability is the point of OOP. Bzzt. Wrong. Code does not have to be object-oriented in
order for it to be reusable. Programmers have long had at their disposal a number of fascinating non -object-oriented
technologies for the reuse of code. There's cut-and-paste and link libraries, to name but two examples (Petreley, 1998)."
There are many such "benefits" involved with OO technology that companies need to carefully examine to make an
accurate assessment of this new technology.

Top level management at Premiere 100 companies have begun to turn away from OO technologies for their
reengineering projects because, "they'd rather wait until the edge is off new technology-and keep any wild, risky
experiments as far away as possible from core business systems, since exposing key corporate data to those risks makes
no sense at all. There's a good reason such old reliables as mainframes, Cobol and IMS still reign over most core IT
operations (Hayes, 1998)." As Charles Popper, VP of Corporate Computer Services at Merck & Co., put it, "[it] doesn't
mean these and other Premier 100 companies don't make bets on advanced technology. But they'd rather be 'fast
followers,' waiting until the odds of success are a bit more in their favor-and the edge is a little less bleeding (Hayes,
1998)." This appears to be wise advice in the current IT environment, advice that many of the Premiere 100 companies
are heeding.

Page 213

Conclusion

OO technology has established itself as the wave of the future; the problem is that the future is not quite upon us yet. An
MIT study found that, ''object-oriented technology will be considered experimental for a long time to come. This implies
that developers will try to avoid using it on large, visible, or critical projects in the near future (Kozaczynski &
Kuntzmann-Combelles, 1993)." While it may be possible to obtain significant advantages from implementing the
technology before it is entrenched as an industry-accepted technology, it is more likely that companies will make the
move too early. Due to this premature entry into the world of OO technology in the business process reengineering
environment, companies will likely encounter costly obstacles from the time-consuming process that may well decrease
productivity and wreak havoc on the business as a whole.

At the present time, reengineering with OO technology is a gamble. The Premiere 100 companies have recognized this
gamble; "On average, object oriented technologies are only moderately important to Premier 100 companies. Only 30%
of respondents say that they are very important. But the secret to handling hot technologies-especially when they seem
to be major gambles-is to manage these projects like the high -risk investment they are (Hayes, 1998)." Corporations that
decide to reengineer their business processes with OO technology, will be wagering that all of the benefits that they hear
about from their vendors are true, not will be true, but are true right now. If code reusability is not an option and there
are not object libraries available, if OO systems are not easily developed and modified, if OO technology does not
facilitate the development of complex systems, and if OO technology fails to increase productivity then companies that
attempt to reengineer with this technology will find themselves holding a losing hand with a large pot on the table and
no way to fold. The simple promise that OO technology is coming of age should not be a deciding factor for
corporations that are contemplating using OO technology to reengineer their business processes.

The health care industry has found itself wrestling with these exact issues and their response has been less than
supportive of OO technology:

Page 214

If Wall Street offers clues about technology headed for the mainstream, then it's a good bet that the makers of health care
software will continue to focus on the conventional. Of 31 companies going public between 1992 and 1997, most didn't
base their stock offerings on new-generation technologies, according to an analysis conducted by Health Care Investment
Visions, Alameda, Calif . . . That means the Internet, artificial intelligence, object-oriented systems, and speech recognition-
the very technologies needed for electronic medical records-may be years away from wide-scale use in health care (Tech
Tomorrow, 1998).

If the health care industry has drawn this conclusion, it seems likely that other companies seeking to embark on a
reengineering project are making similar decisions in regards to the maturity, reliability, and benefits of OO
technologies.

There will always be new technologies, however, in order to maximize the benefits of these new technologies, it is often
wiser to be patient and allow the technology to mature rather than risking the productivity and livelihood of the
organization by being on the cutting, or bleeding, edge of technology.

References

Brown, David (1997). Object-Oriented Analysis: Objects In Plain English. New York: John Wiley & Sons, Inc.

Burger, Dale (1999, January 1). Java 2 receives a lukewarm welcome. Computing Canada, 25, 4.

Du, Timon Chih-Ting & Wolfe, Philip M. (1997, September). An implementation perspective of applying object-
oriented database technologies. IIE Transactions, 29, 733-742.

Freeman, Eva (1997, March). Is OO app dev worth the cost? Datamation, 43, 82-86.

Golick, Jerry (1998, November 21). Dealing with distributed objects. Data Communications, 27 , 62-69.

Hayes, Frank (1998, November 16). Pragmatic risks. Computerworld, Premier 100 Supplement, 38-39.

High Tech Systems, Inc. (1997). Business process reengineering? A practical introduction to business process
reengineering and object

Page 215

modeling (On-line). http://www.objectdiscovery.com/bpr/index.htm

Kozaczynski, Wojtek & Kuntzmann-Combelles, Annie (1993, January). What it Takes to Make OO Work. IEEE
Software, 10, 21-23.

McKeen, James, D. & Smith, Heather A. (1997). Management Challenges in IS: Successful Strategies and Appropriate
Action. New York: John Wiley & Sons, Inc.

Meyer, Bertrand (1998, January). The future of object technology. Computer, 31 , 140-141.

Morgenthal, J.P. (1998, June 1). OODBMS can save you lots of work. Internetweek, 717 , 11.

Petreley, Nicholas (1998, September, 14). Mr. Spock and Dr. McCoy give an object-oriented programming tutorial.
InfoWorld, 20, 112.

Radding, Alan (1998, November 9). Hidden costs of reuse. Informationweek, 708, 1A-8A.

Ruber, Peter (1997, January 27). Object relief. InfoWorld, 19, 85-86.

Semich, J. William (1995, September 15). C/S manufacturing: Build, buy, or reengineer? Datamation, 41, 84-93.

Sliwa, Carol (1998, August 24). Java use limited in critical apps. Computerworld, 32 , 1,76.

Taylor, David A., PhD. (1990). Object-Oriented Technology: A Manager's Guide. Reading, Massachusetts: Addison-
Wesley Publishing Company, Inc.

Tech tomorrow: More of the same? (1998, February 20). Hospitals & Health Networks, 72, 38.

Page 216

About the Authors

Book Editor

Rick Gibson is an Associate Professor at the American University in the Department of Computer Science and
Information Systems. His research has been focused on global software development and software process
improvement.

Dr. Gibson has over 20 years of software engineering and management experience. He has managed major projects in
support of commercial, government and educational organizations for development of computer applications. He has
trained project teams around the globe in project management, defect prevention, quality metrics, ISO 9000, and Y2K
remediation.

Dr. Gibson's background includes system development using structured and object oriented software development
methodologies. As a Software Engineering Institute authorized lead evaluator, he has conducted software evaluations of
over forty different software development organizations. He has extensive experience in the development of process
improvement and corrective action plans for evaluated organizations.

Chapter Authors

Gerold E Cameron is manager of the Document Imaging Center for American University-Enrollment Services. He
holds a bachelor's degree in accounting and a master's degree in computer information systems both from American
University.

Hernán Cobo is a systems engineer graduate from the Universidad Nacional del Centro de la Provincia de Buenos
Aires, Argentina. Now he is a Professor in the Computer and Systems Department of the Exacts Sciences Faculty. He is
in charge of organizing the Systems and Communications aspects of the University. His research interest is software
engineering.

Jane Fedorowicz holds the Rae D. Anderson Chair in Accountancy and

Page 217

Information Systems at Bentley College where she is teaching accounting and information systems courses. She
received her M.S. and Ph.D. degrees in Systems Sciences from Carnegie-Mellon University. She has previously taught
at Carnegie-Mellon University, Northwestern University, Boston University and the University of Massachusetts at
Boston. Professor Fedorowicz currently serves on the editorial boards of Information Systems Research, the e-journal
Communications of the Association for Information Systems and the Review of Accounting Information Systems . Her
primary research interests involve the impact of information technologies on individuals and organizations, especially
enterprise information systems and object oriented technologies. She has published in Decision Sciences, Journal of
Management Information Systems, Information and Management, ACM Transactions on Database Systems,
Communications of the ACM, International Journal of Technology Management, Decision Support Systems, and many
other venues. She is a frequent speaker for research and practitioner groups.

Mehdi Ghods is an Associate Technical Fellow with The Boeing Company. He earned graduate degrees in physics,
computer science and measurement. Prior to joining The Boeing Company, he was a faculty member in the radiology
department at Michigan State University. His current research interests and work include operations research,
management information systems, technology transfer, and in particular, measurement and research in information
technology.

Robert M. Gittins is in his final semester in the Management Information Systems (MIS) Master's Program in the
Computer Science and Information Systems (CSIS) Department at American University (AU) in Washington, DC. In
May 1996, he graduated with a bachelor's degree from AU while majoring in political science and criminal justice. Mr.
Gittins plans to attend law school starting in the 1999 fall semester to pursue a career as an intellectual property attorney
and consultant with a focus on information technology (IT) and Internet policy. During the course of his education, Mr.
Gittins has worked as a member of AU's Office of Information Technology's IT staff, and he currently holds the position
of Information Systems Manager in the Department of Continuing Education & Special Programs at AU. Mr. Gittins has
also taught undergraduate courses in the CSIS department at American University and will continue to do so in the
foreseeable future.

Gretchen Irwin is a Senior Lecturer in the Management Science and Information Systems Department at the University
of Auckland. Her research focuses on the teaching, learning, and the effective use of information technology by systems
developers and end users. Her work has been published in the Communications of the ACM, Journal of MIS, and
Human-Computer Interaction. Gretchen completed her Master's Degree and Ph.D. in Information Systems at the
University of Colorado, Boulder.

Denis M. S. Lee is a Professor of Computer Information Systems in the

TE
AM
FL
Y

Team-Fly®

Page 218

Sawyer School of Management at Suffolk University. He holds mechanical engineering degrees from Columbia
University and MIT, as well as a Ph.D. from the Sloan School of Management at MIT.

Dr. Lee's research interests are related to the management of computer-based technologies and the management of
technical professionals. He is currently the Principal Investigator of a research project funded by the National Science
Foundation on the knowledge acquisition behavior of young information systems workers. His research articles have
appeared in the Academy of Management Journal, Management Science, MIS Quarterly, the IEEE Transactions on
Engineering Management, Journal of Engineering and Technology Management and the Journal of Educational
Computing Research. Dr. Lee is also active in a number of professional societies and serves on the editorial boards of
the IEEE Transactions on Engineering Management and the Journal of Engineering and Technology Management.

Holly Lee is the CIO/CFO of a small office supply company in Illinois. She holds an M.B.A. with a major in
Information Technology from The University of Kansas. Ms. Lee previously worked in the banking and export
industries, and has extensive experience in Japanese business. Her interests include enterprise system integration, IS
personnel expertise, and object oriented technologies.

Virginia Mauco received her systems engineering degree at the Universidad Nacional del Centro de la Provincia de
Buenos Aires, Argentina. She is an Assistant in the Computer and Systems Department, Exacts Sciences Faculty, of the
same University. Her principal areas of research interest are systems reengineering and OO systems.

Jim Nelson is a lecturer of Information Systems at the University of Kansas. He received his B.S. in Computer Science
from California Polytechnic State University, San Luis Obispo, and his M.S. and Ph.D. in Information Systems from the
University of Colorado, Boulder. His research interests include developing theoretically grounded models and metrics
for business processes and investigating the problems people have shifting to emerging technologies.

Kay Nelson has both national and international experience in the fields of information systems and engineering
management. She is currently an Assistant Professor at the University of Kansas. Dr. Nelson earned her Ph.D. from the
University of Texas at Austin in Management Information Systems. Her current research interests include the
measurement of software maintenance quality and maintenance effectiveness, the role of tools and methods in software
maintenance, and the use of information systems for strategic communication and coordination. Dr. Nelson has
previously published in MIS Quarterly.

Page 219

David Patton holds a B.A. in International Affairs and a M.S. in CyberMedia Science, both from The American
University in Washington, D.C. David currently works for USWeb/CKS in Bethesda, MD. where he spends his time
building Internet-based applications for electronic commerce, knowledge management, and enterprise collaboration. In
the past David has conducted research on information operations and interface design.

Alex Podaras has a B.S.B.A with a double major in business administration and computer information systems from
American University. He also has a M.S. degree in computer information systems from American University. Alex
Podaras has experience in working in business and information technology areas. He has worked for such large
companies as Hewlett Packard (HP) and has first hand experience with their computer information systems.

Edward Sim received his Master of Science Degree in Management Information Systems from George Washington
University and his Ph.D. in Information Systems from the University of Maryland, Baltimore. He has taught in the areas
of system analysis and design, database and decision support systems, and information systems. He is currently a
member of Association of Information Systems, Decision Science Institute, INFORMS and the Society for Computer
Simulation International. He is also a member of Phi Kappa Phi. His current research interests include information
system development methodologies, Object Oriented technologies and methodologies, and requirements engineering . .
Dr. Sim is an assistant professor of Management Information Systems at Loyola College in Maryland

Chamini Wasalathantry is a consultant with Ernst & Young in New Zealand. Chamini completed her Master's Degree
in Information Systems at the University of Auckland in 1998.

Page 220

Index

A

Abstract User Interface Description Language 142

ActiveX 50

adoption 16

adoption and diffusion 80

application servers 45

artificial intelligence 8

attitude of the team toward structured methods 27

Automated Class Exerciser 48

B

behavior analysis 6

benefits of Object Oriented (OO) methodologies 26

black and white-box integration 50

business process redesign 170

C

C++ 187

caching 52

class-structure hierarchies 5

client/server 150

client/server applications 148

client/server architectures 138

client/server environment 152

clusters 47

COBOL 137

COBRA 52

code generation 194

code inspection 32

code reusability 212

code reuse 202

Common Object Request Broker Architecture 185

compiler construction 194

complex data relationships 46

Component Object Model 184

component-based development 188

computer-aided design 46

concepts of OO methodology 39

conceptual classification 6

conceptual clustering 6

D

data dictionary 2, 14

data flow diagrams 2, 14

data manipulation logic 156

data type 9

data warehouses 164

Data/process modeling 30

database management system 156, 160

databases 8

DCOM 52

design inspection 31 , 37

determining requirements 20

diffusion 16

diffusion of innovation 15

Distributed Component Object Model 185

distributed object business engineering 172

distributed object-oriented systems 150, 163

distributed objects 207

distribution channels 168

drag-and-drop interfaces 50

"dumb" terminals 152

Dynamic Object Oriented Programming 137

Page 221

Dynamic testing 47

E

E-commerce 53

encapsulation 49, 151, 157

enhance state transition diagram 54

enterprise modeling 30

enterprise resource planning 199

enterprise-wide object 166

entity-relation (ER) diagrams 12

estimation 30

expert-novice differences 90

extensibility 39

F

FAIME 137

flexibility 145

focus of traditional structured methods 26

G

Generic Development Process 45

global marketplace 167, 168

graphical database designer 50

graphical models 2

graphical user interface 168

graphical user interfaces 10, 138, 203

H

heuristics 3

hierarchical databases 146

host-based 152

human computer interfaces 8

Hypertext Markup Language 50

Hypertext Transfer Protocol 53

I

implementation 16, 19

in-depth survey 80

information distribution 51

Internet Service Provider 164

IS methodologies 2

J

Java 45, 50, 182, 188

K

knowledge base 166

knowledge-based organization 170

L

legacy applications 137

legacy relational systems 209

legacy systems 186

M

market capitalization 168

metrics collection 32

migration challenges 143

modularization 119

N

network infrastructures 169

O

object database 54, 182

object extraction 120

object oriented 77

object oriented analysis 1, 3

object oriented application development 206

object oriented database 209

object oriented enterprise modeling 38

object oriented methods 25

object oriented metrics 38

object oriented software development 4, 37

object oriented technology 169

object oriented testing 43

object representation 138

objectives of traditional structured methodologies 26

observability 17

Page 222

OO 39

OO analysis and design 201

OO CASE tools 201

OO database management systems 201

OO methods 39

OO modeling process 90

OO technology 89

OOPLs 10

Open Database Connectivity 50

open standards 170

P

plug-and-play 142

Polymorphism 7

problem analysis 2

problem description 2

process specifications 2

program dependence graph 116

programming language 8

prototyping approach 37

R

reengineered software 145

reengineering 146

re-usability 45

reengineering 115

reengineering process 207

relational data structures 53

relational database 209

relational database management systems 47

relational databases 46

relational technology 46 , 208

repository 167

requirements analysis 20

restructuring 118

reuse 39 , 46 , 185

reuse code 158

S

shared-device model 153

Smalltalk 10 , 187

software components 158

software development 53 , 189

software engineering 195

software productivity problem 188

Software reuse 78, 89

specifications 2

spiral model 37

standardized protocol 169

standards 31

structured analysis 2

structured methods 25

supply -chain management 181

system requirements 1

system validation 1

T

Theory of Reasoned Action 29

training 39

training and management support 17

training in structured methods 27

U

Unified Modeling Language 15

user training 32

V

verbal protocol 90

W

web integration 56

Wirfs-Brock methodology 6

World Wide Web 138, 185

World Wide Web Consortium 52

X

XML 45

TE
AM
FL
Y

Team-Fly®

	sample.pdf
	sterling.com
	Welcome to Sterling Software

